论文标题

部分可观测时空混沌系统的无模型预测

Positive scalar curvature on manifolds with boundary and their doubles

论文作者

Rosenberg, Jonathan, Weinberger, Shmuel

论文摘要

本文是关于带有非空边界$ \ partial x $的紧凑型歧管$ x $的正标曲率的。在某些情况下,我们完全回答一个问题:$ x $何时具有正标度曲率度量标准,这是一个接近$ \ partial x $的产品指标,或者当$ x $具有积极的标量曲率度量指标,并在边界上平均曲率为正,并且更普遍地,我们研究了$ \ partial x $的$ \ partial x $ carver curvature carvator scurove culvature scurove和x $ x $ x $的关系。 $ m = \ operatorAtorname {dbl}(x,\ partial x)$。

This paper is about positive scalar curvature on a compact manifold $X$ with non-empty boundary $\partial X$. In some cases, we completely answer the question of when $X$ has a positive scalar curvature metric which is a product metric near $\partial X$, or when $X$ has a positive scalar curvature metric with positive mean curvature on the boundary, and more generally, we study the relationship between boundary conditions on $\partial X$ for positive scalar curvature metrics on $X$ and the positive scalar curvature problem for the double $M=\operatorname{Dbl}(X,\partial X)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源