论文标题

Exaid:用于计算机辅助诊断皮肤病变的多模式解释框架

ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis of Skin Lesions

论文作者

Lucieri, Adriano, Bajwa, Muhammad Naseer, Braun, Stephan Alexander, Malik, Muhammad Imran, Dengel, Andreas, Ahmed, Sheraz

论文摘要

在临床工作流程中成功部署基于AI的计算机辅助诊断(CAD)系统的主要障碍是他们缺乏透明的决策。尽管常用的可解释的AI方法提供了对不透明算法的一些见解,但是除了受过训练有素的专家外,这种解释通常是令人费解的,并且不容易理解。关于皮肤镜图像的皮肤病变恶性肿瘤的决定的解释需要特别清晰,因为基本的医学问题定义本身是模棱两可的。这项工作介绍了Exaid(可解释的AI皮肤病学),这是一个用于生物医学图像分析的新型框架,提供了基于多模式概念的解释,包括易于理解的文本解释,并通过视觉地图补充,证明了预测的合理性。 EXAID依靠概念激活向量将人类概念映射到潜在空间中的任意深度学习模型和概念本地化图中所学的概念,以突出输入空间中的概念。然后,对相关概念的这种识别被用来构建以概念的位置信息补充的细颗粒文本解释,以提供全面,连贯的多模式解释。所有信息均在诊断界面中全面显示,以用于临床例程。教育模式提供数据集级别的解释统计数据和数据和模型探索的工具,以帮助医学研究和教育。通过对EXAID的严格定量和定性评估,我们即使在错误的预测中也显示了对CAD辅助方案的多模式解释的实用性。我们认为,Exaid将为皮肤科医生提供一种有效的筛查工具,它们既可以理解又信任。此外,这将是其他生物医学成像领域中类似应用的基础。

One principal impediment in the successful deployment of AI-based Computer-Aided Diagnosis (CAD) systems in clinical workflows is their lack of transparent decision making. Although commonly used eXplainable AI methods provide some insight into opaque algorithms, such explanations are usually convoluted and not readily comprehensible except by highly trained experts. The explanation of decisions regarding the malignancy of skin lesions from dermoscopic images demands particular clarity, as the underlying medical problem definition is itself ambiguous. This work presents ExAID (Explainable AI for Dermatology), a novel framework for biomedical image analysis, providing multi-modal concept-based explanations consisting of easy-to-understand textual explanations supplemented by visual maps justifying the predictions. ExAID relies on Concept Activation Vectors to map human concepts to those learnt by arbitrary Deep Learning models in latent space, and Concept Localization Maps to highlight concepts in the input space. This identification of relevant concepts is then used to construct fine-grained textual explanations supplemented by concept-wise location information to provide comprehensive and coherent multi-modal explanations. All information is comprehensively presented in a diagnostic interface for use in clinical routines. An educational mode provides dataset-level explanation statistics and tools for data and model exploration to aid medical research and education. Through rigorous quantitative and qualitative evaluation of ExAID, we show the utility of multi-modal explanations for CAD-assisted scenarios even in case of wrong predictions. We believe that ExAID will provide dermatologists an effective screening tool that they both understand and trust. Moreover, it will be the basis for similar applications in other biomedical imaging fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源