论文标题

通过动态顶点近似计算的镍超导体的相图

Phase diagram of nickelate superconductors calculated by dynamical vertex approximation

论文作者

Held, Karsten, Si, Liang, Worm, Paul, Janson, Oleg, Arita, Ryotaro, Zhong, Zhicheng, Tomczak, Jan M., Kitatani, Motoharu

论文摘要

我们回顾具有或没有电子相关作用的镍超导体的电子结构。作为最小模型,我们确定了Ni 3 $ d_ {x^2-y^2} $ orbital加上$ a $ a $ -momentum的口袋的单频哈伯德模型。但是,后者仅充当脱钩的电子储层。该储层从{naminal} sr掺杂到强制性的掺杂的掺杂量进行了仔细的翻译。我们的动态平均场理论计算部分已经得到了实验支持的部分,表明$γ$ Pocket,ND 4 $ f $轨道,氧2 $ p $和{}其他Ni 3 $ d $轨道在超导掺杂方案中无关紧要。如果存在拓扑氢或还原不完全,则物理学是完全不同的。然后,由Ni 3 $ d_ {x^2-y^2} $和3 $ d_ {3z^2-r^2} $ orbitals托管的两种波段物理。根据我们的最小建模,我们使用动力学顶点近似在实验之前计算了超导$ t_c $ vs. $ x $相位图。对于如此难以确定$ t_c $的数量,与实验的协议非常好。 $ T_C $随压力或压缩应变增强的预测,也已在实验中得到证实。这支持了单频哈伯德模型以及电子储层是适当的最小模型。

We review the electronic structure of nickelate superconductors with and without effects of electronic correlations. As a minimal model we identify the one-band Hubbard model for the Ni 3$d_{x^2-y^2}$ orbital plus a pocket around the $A$-momentum. The latter however merely acts as a decoupled electron reservoir. This reservoir makes a careful translation from {nominal} Sr-doping to the doping of the one-band Hubbard model mandatory. Our dynamical mean-field theory calculations, in part already supported by experiment, indicate that the $Γ$ pocket, Nd 4$f$ orbitals, oxygen 2$p$ and {the} other Ni 3$d$ orbitals are not relevant in the superconducting doping regime. The physics is completely different if topotactic hydrogen is present or the oxygen reduction is incomplete. Then, a two-band physics hosted by the Ni 3$d_{x^2-y^2}$ and 3$d_{3z^2-r^2}$ orbitals emerges. Based on our minimal modeling we calculated the superconducting $T_c$ vs. Sr-doping $x$ phase diagram prior to experiment using the dynamical vertex approximation. For such a notoriously difficult to determine quantity as $T_c$, the agreement with experiment is astonishingly good. The prediction that $T_c$ is enhanced with pressure or compressive strain, has been confirmed experimentally as well. This supports that the one-band Hubbard model plus an electron reservoir is the appropriate minimal model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源