论文标题

分子动力学轨迹重建的超分辨率,具有双向神经网络

Super-resolution in Molecular Dynamics Trajectory Reconstruction with Bi-Directional Neural Networks

论文作者

Winkler, Ludwig, Müller, Klaus-Robert, Sauceda, Huziel E.

论文摘要

分子动力学模拟是科学中的基石,可以从系统的热力学研究中研究复杂的分子相互作用。通常,创建扩展的分子轨迹可能是一个计算昂贵的过程,例如,在运行$ ab-initio $仿真时。因此,重复此类计算以获得更准确的热力学,或者在通过细粒量子相互作用产生的动力学中获得更高的分辨率,可能是时间和计算的耗时。在这项工作中,我们探索了不同的机器学习(ML)方法,以在后处理步骤中增加点播分子动力学轨迹的分辨率。作为概念证明,我们分析了双向神经网络的性能,例如神经ODES,HAMILTONIAN网络,经常性神经网络和LSTM,以及单向变体作为参考,用于分子动力学模拟(此处:MD17数据集)。我们发现BI-LSTMS是表现最好的模型。通过利用恒温轨迹的局部时间对称性,它们甚至可以学习长期相关性,并在分子复杂性范围内表现出对嘈杂动力学的高鲁棒性。我们的模型可以达到轨迹插值中最多10 $^{-4} $埃斯特罗姆的精确量,同时忠实地重建了几个完整的未见复杂的高频分子振动的完整周期,从而使学习和参考轨迹之间的比较变得难以区分。这项工作中报告的结果可以用作较大系统的基线,以及(2)构建更好的MD集成商。

Molecular dynamics simulations are a cornerstone in science, allowing to investigate from the system's thermodynamics to analyse intricate molecular interactions. In general, to create extended molecular trajectories can be a computationally expensive process, for example, when running $ab-initio$ simulations. Hence, repeating such calculations to either obtain more accurate thermodynamics or to get a higher resolution in the dynamics generated by a fine-grained quantum interaction can be time- and computationally-consuming. In this work, we explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step. As a proof of concept, we analyse the performance of bi-directional neural networks such as neural ODEs, Hamiltonian networks, recurrent neural networks and LSTMs, as well as the uni-directional variants as a reference, for molecular dynamics simulations (here: the MD17 dataset). We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity. Our models can reach accuracies of up to 10$^{-4}$ angstroms in trajectory interpolation, while faithfully reconstructing several full cycles of unseen intricate high-frequency molecular vibrations, rendering the comparison between the learned and reference trajectories indistinguishable. The results reported in this work can serve (1) as a baseline for larger systems, as well as (2) for the construction of better MD integrators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源