论文标题
部分可观测时空混沌系统的无模型预测
Supervised Homogeneity Fusion: a Combinatorial Approach
论文作者
论文摘要
将回归系数融合到同质组中可以揭示每组内共同值的系数。这样的群体同质性降低了参数空间的内在维度,并释放了更尖锐的统计准确性。我们提出并研究了一种称为$ L_0 $ fusion的新组合分组方法,该方法适用于混合整数优化(MIO)。在统计方面,我们确定了一个基本数量,称为分组灵敏度,该敏感性是恢复真实群体的困难。我们表明,在分组敏感性的最薄弱的要求下,$ L_0 $ - 融合达到了分组一致性:如果违反了此要求,则小组错误指定的最小值风险将无法收敛至零。此外,我们表明,在高维度中,可以应用$ L_0 $ - 融合以及确定的筛选功能集,而无需任何统计效率的必要损失,同时大大降低了计算成本。在算法方面,我们为$ l_0 $ fusion提供MIO配方以及温暖的开始策略。模拟和实际数据分析表明,在分组准确性方面,$ L_0 $ - 融合比其竞争对手具有优越性。
Fusing regression coefficients into homogenous groups can unveil those coefficients that share a common value within each group. Such groupwise homogeneity reduces the intrinsic dimension of the parameter space and unleashes sharper statistical accuracy. We propose and investigate a new combinatorial grouping approach called $L_0$-Fusion that is amenable to mixed integer optimization (MIO). On the statistical aspect, we identify a fundamental quantity called grouping sensitivity that underpins the difficulty of recovering the true groups. We show that $L_0$-Fusion achieves grouping consistency under the weakest possible requirement of the grouping sensitivity: if this requirement is violated, then the minimax risk of group misspecification will fail to converge to zero. Moreover, we show that in the high-dimensional regime, one can apply $L_0$-Fusion coupled with a sure screening set of features without any essential loss of statistical efficiency, while reducing the computational cost substantially. On the algorithmic aspect, we provide a MIO formulation for $L_0$-Fusion along with a warm start strategy. Simulation and real data analysis demonstrate that $L_0$-Fusion exhibits superiority over its competitors in terms of grouping accuracy.