论文标题

将溶液分类为几个半线性多谐和方程和分数方程

Classification of solutions to several semi-linear polyharmonic equations and fractional equations

论文作者

Du, Zhuoran, Feng, Zhenping, Li, Yuan

论文摘要

我们关注以下半线性多谐和方程,并具有积分约束\ begin {align} \ left \ {\ begin {array} {rl} {rl}&( - δ) &\ int _ {\ mathbb {r}^n} u _+^γdx<+\ infty,\ end {array} \ right。 \ end {align}其中$ n> 2p $,$ p \ geq2 $和$ p \ in \ mathbb {z} $。我们以$γ\在(1,\ frac {n} {n-2p})$中获得,任何满足Infinity在Infinity生长时的非稳定解决方案均在$ \ Mathbb {r}^{n} $中的某个点上是径向对称的,并且沿径向方向降低了单调。在情况下,$ p = 2 $,(1,\ frac {n+4} {n-4})$为更通用的指数$γ\建立了相同的结果。对于以下具有积分约束\ begin {qore*} \ left \ {\ {arnay} {arl} {rl}&( - δ)^sv = v^γ_+ ~~ \ mbox {in} &\ int _ {\ mathbb {r}^n} v _+^{\ frac {n(γ-1)} {2S}} dx <+\ infty,~~~~~~~~~~~~~~~~~ end {array} \ right。 \ end {equation*}其中$ s \ in(0,1)$,$γ\ in(1,\ frac {n+2s} {n-2s} {n-2s})$和$ n \ geq 2 $,我们还完成了与Infinity某些增长的解决方案分类。此外,观察到,在\ cite {chen}中命名为无穷大的最大原理衰减的假设可以稍微削弱。基于此观察结果,我们将两个半线性分数方程的所有正溶液分类,而没有积分约束。

We are concerned with the following semi-linear polyharmonic equation with integral constraint \begin{align} \left\{\begin{array}{rl} &(-Δ)^pu=u^γ_+ ~~ \mbox{ in }{\mathbb{R}^n},\\ \nonumber &\int_{\mathbb{R}^n}u_+^γdx<+\infty, \end{array}\right. \end{align} where $n>2p$, $p\geq2$ and $p\in\mathbb{Z}$. We obtain for $γ\in(1,\frac{n}{n-2p})$ that any nonconstant solution satisfying certain growth at infinity is radial symmetric about some point in $\mathbb{R}^{n}$ and monotone decreasing in the radial direction. In the case $p=2$, the same results are established for more general exponent $γ\in(1,\frac{n+4}{n-4})$. For the following fractional equation with integral constraint \begin{equation*} \left\{\begin{array}{rl} &(-Δ)^sv=v^γ_+ ~~ \mbox{ in }{\mathbb{R}^n},~~~~\\ &\int_{\mathbb{R}^n}v_+^{\frac{n(γ-1)}{2s}}dx<+\infty,~~~~~ \end{array}\right. \end{equation*} where $s\in(0,1)$, $γ\in (1, \frac{n+2s}{n-2s})$ and $n\geq 2$, we also complete the classification of solutions with certain growth at infinity. In addition, observe that the assumptions of the maximum principle named decay at infinity in \cite{chen} can be weakened slightly. Based on this observation, we classify all positive solutions of two semi-linear fractional equations without integral constraint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源