论文标题

凝结物质系统中通用力场的机器学习模型的描述符

Descriptors for Machine Learning Model of Generalized Force Field in Condensed Matter Systems

论文作者

Zhang, Puhan, Zhang, Sheng, Chern, Gia-Wei

论文摘要

我们概述了用于凝结物质系统的多尺度动力建模的机器学习(ML)方法的一般框架,尤其是强相关的电子模型。这些系统中复杂的空间时间行为通常是由于准粒子与新兴的动态经典自由度之间的相互作用而引起的,例如局部晶格扭曲,旋转,旋转和订单参数。提出的框架的核心是ML能量模型,通过成功模拟耗时的电子结构计算,可以准确地基于中间社区中的经典磁场来准确预测局部能量。为了正确地包括电子哈密顿量的对称性,ML能量模型的关键组成部分是将邻域配置转换为不变特征变量的描述符,这些变量是学习模型的输入。制定了经典字段描述符的一般理论,并根据存在经典领域的内部对称性而区分两种模型。提出了对经典字段描述符的几种特定方法。我们的重点是群体理论方法,该方法提供了一种基于双光谱系数计算不变性的系统和严格的方法。我们提出了基于参考不可约表示的概念对双光谱方法的有效实施。最后,在著名的电子晶格模型上证明了各种描述符的实现。

We outline the general framework of machine learning (ML) methods for multi-scale dynamical modeling of condensed matter systems, and in particular of strongly correlated electron models. Complex spatial temporal behaviors in these systems often arise from the interplay between quasi-particles and the emergent dynamical classical degrees of freedom, such as local lattice distortions, spins, and order-parameters. Central to the proposed framework is the ML energy model that, by successfully emulating the time-consuming electronic structure calculation, can accurately predict a local energy based on the classical field in the intermediate neighborhood. In order to properly include the symmetry of the electron Hamiltonian, a crucial component of the ML energy model is the descriptor that transforms the neighborhood configuration into invariant feature variables, which are input to the learning model. A general theory of the descriptor for the classical fields is formulated, and two types of models are distinguished depending on the presence or absence of an internal symmetry for the classical field. Several specific approaches to the descriptor of the classical fields are presented. Our focus is on the group-theoretical method that offers a systematic and rigorous approach to compute invariants based on the bispectrum coefficients. We propose an efficient implementation of the bispectrum method based on the concept of reference irreducible representations. Finally, the implementations of the various descriptors are demonstrated on well-known electronic lattice models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源