论文标题
可扩展的半监督维度降低,通过GPU加速嵌入
Scalable semi-supervised dimensionality reduction with GPU-accelerated EmbedSOM
论文作者
论文摘要
降低降低方法已经发现了大量的应用科学领域的可视化工具。尽管存在许多不同的方法,但它们的性能通常不足以快速洞悉许多当代数据集,而无监督的使用方式则阻止了用户利用数据集探索方法的方法,并对细节进行了细节以提高可视化质量。我们提出了Blossom,这是一种高性能的半监督维度缩小软件,用于互动的用户使用的高维数据集可视化,并具有数百万个单个数据点。 Blossom建立在嵌入式算法的GPU加速实现的基础上,并采用了几种基于里程碑的算法,用于将无监督的模型学习算法与用户监督连接。我们显示了Blossom在逼真的数据集中的应用,它有助于产生高质量的可视化,以结合用户指定的布局并专注于某些功能。我们认为,半监督维度的降低将改善科学领域(例如单细胞细胞仪)的数据可视化可能性,并为数据集探索和注释中的新方向提供快速有效的基础方法。
Dimensionality reduction methods have found vast application as visualization tools in diverse areas of science. Although many different methods exist, their performance is often insufficient for providing quick insight into many contemporary datasets, and the unsupervised mode of use prevents the users from utilizing the methods for dataset exploration and fine-tuning the details for improved visualization quality. We present BlosSOM, a high-performance semi-supervised dimensionality reduction software for interactive user-steerable visualization of high-dimensional datasets with millions of individual data points. BlosSOM builds on a GPU-accelerated implementation of the EmbedSOM algorithm, complemented by several landmark-based algorithms for interfacing the unsupervised model learning algorithms with the user supervision. We show the application of BlosSOM on realistic datasets, where it helps to produce high-quality visualizations that incorporate user-specified layout and focus on certain features. We believe the semi-supervised dimensionality reduction will improve the data visualization possibilities for science areas such as single-cell cytometry, and provide a fast and efficient base methodology for new directions in dataset exploration and annotation.