论文标题

功能匹配作为改进的可穿戴脑电图的转移学习技术

Feature matching as improved transfer learning technique for wearable EEG

论文作者

Heremans, Elisabeth R. M., Phan, Huy, Ansari, Amir H., Borzée, Pascal, Buyse, Bertien, Testelmans, Dries, De Vos, Maarten

论文摘要

目的:随着可穿戴睡眠监控设备的快速升高,具有非规定电极配置,需要自动化算法,这些算法可以在具有少量标记数据的配置上执行睡眠分期。转移学习能够从源形态(例如标准电极配置)适应神经网络权重到新的目标模式(例如非惯性电极配置)。方法:我们提出了特征匹配,这是一种新的转移学习策略,可替代常用的填充方法。该方法包括培训一个模型,该模型具有来自源模式的大量数据,以及源和目标模态的配对样本。对于那些配对样品,模型提取了目标模态的特征,将这些特征与源模式相应样本的特征匹配。结果:我们将特征匹配与三个不同目标域的填充和两个不同的神经网络体系结构进行了比较,并具有不同量的培训数据。特别是在小型队列上(即2-5个在非规定记录设置中标记的记录),功能匹配系统地超过了对不同方案和数据集的平均准确性相对相对差异的平均相对差异。结论:我们的发现表明,特征匹配的表现优于转移学习方法,尤其是在非常低的数据制度中。意义:因此,我们得出的结论是,功能匹配是一种有希望的新方法,可与新型设备进行可穿戴睡眠阶段。

Objective: With the rapid rise of wearable sleep monitoring devices with non-conventional electrode configurations, there is a need for automated algorithms that can perform sleep staging on configurations with small amounts of labeled data. Transfer learning has the ability to adapt neural network weights from a source modality (e.g. standard electrode configuration) to a new target modality (e.g. non-conventional electrode configuration). Methods: We propose feature matching, a new transfer learning strategy as an alternative to the commonly used finetuning approach. This method consists of training a model with larger amounts of data from the source modality and few paired samples of source and target modality. For those paired samples, the model extracts features of the target modality, matching these to the features from the corresponding samples of the source modality. Results: We compare feature matching to finetuning for three different target domains, with two different neural network architectures, and with varying amounts of training data. Particularly on small cohorts (i.e. 2 - 5 labeled recordings in the non-conventional recording setting), feature matching systematically outperforms finetuning with mean relative differences in accuracy ranging from 0.4% to 4.7% for the different scenarios and datasets. Conclusion: Our findings suggest that feature matching outperforms finetuning as a transfer learning approach, especially in very low data regimes. Significance: As such, we conclude that feature matching is a promising new method for wearable sleep staging with novel devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源