论文标题
反转对称的非挥发性电场控制
Nonvolatile Electric-Field Control of Inversion Symmetry
论文作者
论文摘要
在凝结的系统系统中,相位边界处的基态之间的竞争会导致外部刺激下的材料特性发生显着变化,尤其是当这些基态具有不同的晶体对称性时。一个关键的科学和技术挑战是稳定和控制与外部刺激的对称阶段的共存。使用BifeO3(BFO)层限制在电介质TBSCO3作为模型系统之间,我们稳定中心对称性和非中心对称BFO相的混合相共存,分别在室温下,分别具有抗极性,绝缘和极性。面内电(极性)场的应用既可以去除系统中的中心对称性并引入中心对称性,从而导致两个阶段之间可逆的非挥发性相互转换。中心对称性绝缘和非中心对称半导体相之间的相互转换与超过三个数量级的非线性光学响应的同时变化,电阻率的变化超过五个数量级以上,并且极顺序变化。我们的工作建立了一个材料平台,允许使用新型的跨功能设备,以利用光学,电气和铁反应的变化。
In condensed-matter systems, competition between ground states at phase boundaries can lead to significant changes in material properties under external stimuli, particularly when these ground states have different crystal symmetries. A key scientific and technological challenge is to stabilize and control coexistence of symmetry-distinct phases with external stimuli. Using BiFeO3 (BFO) layers confined between layers of the dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BFO phases with antipolar, insulating and polar, semiconducting behavior, respectively at room temperature. Application of in-plane electric (polar) fields can both remove and introduce centrosymmetry from the system resulting in reversible, nonvolatile interconversion between the two phases. This interconversion between the centrosymmetric insulating and non-centrosymmetric semiconducting phases coincides with simultaneous changes in the non-linear optical response of over three orders of magnitude, a change in resistivity of over five orders of magnitude, and a change in the polar order. Our work establishes a materials platform allowing for novel cross-functional devices which take advantage of changes in optical, electrical, and ferroic responses.