论文标题
使用立方样条函数的低头构图轨迹的分析塑形方法
Analytical Shaping Method for Low-Thrust Rendezvous Trajectory Using Cubic Spline Functions
论文作者
论文摘要
初步任务设计需要对低潮的聚会轨迹进行有效,准确的近似,这通常是三维的,并且涉及多次革命。在本文中,为分析近似开发了一种新的使用立方样条函数的塑形方法,该方法在最佳和计算效率方面具有优势。在分析上满足了边界状态和传输时间的集合约束,这是在预先指定的边界条件和分型样条函数的边界条件和段数字的情况下。然后根据是否具有免费优化参数来制定两个特定的形状。没有自由参数的形状提供了有效且可靠的估计,而另一个则允许随后的优化,以满足其他约束,例如对推力幅度的约束。该方法与粒子群优化算法结合使用的应用,通过两个典型的星际集合式任务,也就是说,从地球到小行星狄俄尼索斯的倾斜多革命轨迹和一个多革命的倾斜轨迹,以及一个多货币园艺的多货币轨迹。仿真示例表明,在为全局搜索提供良好的估计以及为后续轨迹优化提供适当的初始猜测方面,所提出的方法优于现有方法。
Preliminary mission design requires an efficient and accurate approximation to the low-thrust rendezvous trajectories, which might be generally three-dimensional and involve multiple revolutions. In this paper, a new shaping method using cubic spline functions is developed for the analytical approximation, which shows advantages in the optimality and computational efficiency. The rendezvous constraints on the boundary states and transfer time are all satisfied analytically, under the assumption that the boundary conditions and segment numbers of cubic spline functions are designated in advance. Two specific shapes are then formulated according to whether they have free optimization parameters. The shape without free parameters provides an efficient and robust estimation, while the other one allows a subsequent optimization for the satisfaction of additional constraints such as the constraint on the thrust magnitude. Applications of the proposed method in combination with the particle swarm optimization algorithm are discussed through two typical interplanetary rendezvous missions, that is, an inclined multi-revolution trajectory from the Earth to asteroid Dionysus and a multi-rendezvous trajectory of sample return. Simulation examples show that the proposed method is superior to existing methods in terms of providing good estimation for the global search and generating suitable initial guess for the subsequent trajectory optimization.