论文标题

使用自动差分拟合Matérn平滑度参数

Fitting Matérn Smoothness Parameters Using Automatic Differentiation

论文作者

Geoga, Christopher J., Marin, Oana, Schanen, Michel, Stein, Michael L.

论文摘要

Matérn协方差函数无处不在,在高斯过程中的应用到空间统计及更高版本中。这样做的最重要的原因也许是,平滑度参数$ν$完全控制了该过程的均值不同性,这对估计数量的行为(例如插值和预测)具有重大影响。不幸的是,Matérn协方差功能相对于$ν$,需要修改后的第二种贝塞尔函数$ \ MATHCAL {k}_ν$的衍生物。尽管确实存在这些衍生物的封闭形式表达式,但它们非常困难且昂贵。因此,许多软件包需要修复$ν$,而不是估计它,以及所有现有的软件包,这些软件包试图提供估算$ν$的功能,使用$ \partial_ν\ Mathcal {k}_ν$的有限差估计。在这项工作中,我们介绍了$ \ Mathcal {K}_ν$的新实现,该实现旨在通过自动差异(AD)提供衍生物,并且与使用有限差异计算的衍生物相比,其产生的衍生物的速度明显更快,更准确。我们为速度和准确性提供了全面的测试,并表明我们的AD解决方案可用于在设置中构建准确的Hessian矩阵,以实现二阶最大似然估计,在这些设置中,Hessians构建具有有限差异近似值的Hessians完全失败。

The Matérn covariance function is ubiquitous in the application of Gaussian processes to spatial statistics and beyond. Perhaps the most important reason for this is that the smoothness parameter $ν$ gives complete control over the mean-square differentiability of the process, which has significant implications for the behavior of estimated quantities such as interpolants and forecasts. Unfortunately, derivatives of the Matérn covariance function with respect to $ν$ require derivatives of the modified second-kind Bessel function $\mathcal{K}_ν$ with respect to $ν$. While closed form expressions of these derivatives do exist, they are prohibitively difficult and expensive to compute. For this reason, many software packages require fixing $ν$ as opposed to estimating it, and all existing software packages that attempt to offer the functionality of estimating $ν$ use finite difference estimates for $\partial_ν\mathcal{K}_ν$. In this work, we introduce a new implementation of $\mathcal{K}_ν$ that has been designed to provide derivatives via automatic differentiation (AD), and whose resulting derivatives are significantly faster and more accurate than those computed using finite differences. We provide comprehensive testing for both speed and accuracy and show that our AD solution can be used to build accurate Hessian matrices for second-order maximum likelihood estimation in settings where Hessians built with finite difference approximations completely fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源