论文标题
具有PT-Symetries的非线性经典和量子整合系统
Nonlinear Classical and Quantum Integrable Systems with PT-symmetries
论文作者
论文摘要
可集成系统的一个关键特征是可以解决它们以获得精确的分析解决方案。我们展示了如何通过具有PT-符号的一些众所周知的非线性偏微分方程的概括来构建新模型,同时保持可集成性。随后,我们从众所周知的方法开发新方法,以获取这些新系统的精确分析孤子解决方案。我们进行的第一个PT对称概括是对复杂和多重复合字段的扩展。与PT-对称性非铁量子系统中存在的现实属性一致,我们发现PT-Symerties在此处保守指控的现实中也起着关键作用。然后,我们扩展了调查,以探索正弦戈顿和海洋方程的退化多氧化解决方案。特别是,我们发现与非分类多氧化解决方案不同,来自退化孤子溶液散射的通常时间延长是时间依赖性的,并提供了通用公式来计算N-溶液溶液散射的精确时间延迟值。我们采用的集成系统的其他PT对称扩展具有非局部性质,空间和/或时间的非定位性是时间晶体类型。在开发用于为这些系统构建孤子解决方案的新方法的同时,即使在单soliton溶液案例中,我们也会发现具有不同参数依赖性和定性行为的新类型的解决方案。我们利用连续海森堡和Landau-lifschitz系统之间利用量规等值,以查看非局部性是如何从一个系统继承而来的,反之亦然。将研究扩展到量子状态,我们将Darboux转换方案概括为完全依赖时间的非铁量子系统,这使我们能够创建一个无限的可解决模型塔。
A key feature of integrable systems is that they can be solved to obtain exact analytical solutions. We show how new models can be constructed through generalisations of some well known nonlinear partial differential equations with PT-symmetries whilst preserving integrability. Subsequently, we develop new methods from well-known ones to obtain exact analytical soliton solutions for these new systems. The first PT-symmetric generalization we take are extensions to the complex and multicomplex fields. In agreement with the reality property present in PT-symmetric non-Hermitian quantum systems, we find PT-symmetries also play a key role in the reality of conserved charges here. We then extend our investigations to explore degenerate multi-soliton solutions for the sine-Gordon and Hirota equations. In particular, we find the usual time-delays from degenerate soliton solution scattering are time-dependent, unlike the non-degenerate multi-soliton solutions, and provide a universal formula to compute the exact time-delay values for the scattering of N-soliton solutions. Other PT-symmetric extensions of integrable systems we take are of nonlocal nature, with nonlocalities in space and/or in time, of time crystal type. Whilst developing new methods for the construction of soliton solutions for these systems, we find new types of solutions with different parameter dependence and qualitative behaviour even in the one-soliton solution cases. We exploit gauge equivalence between the Hirota system with continuous Heisenberg and Landau-Lifschitz systems to see how nonlocality is inherited from one system to another and vice versa. Extending investigations to the quantum regime, we generalize the scheme of Darboux transformations for fully time-dependent non-Hermitian quantum systems, which allows us to create an infinite tower of solvable models.