论文标题
在Sylvester Matrix等级功能上
On the space of Sylvester matrix rank functions
论文作者
论文摘要
鉴于环$ r $,Sylvester等级功能的概念是在Cohn的Epic Division $ r $ rings的背景下构想的。 在本文中,我们研究和描述Sylvester排名的空间在某些环的家族中起作用,包括Dedekind域,简单的左noetherian戒指和偏斜Laurent多项式环$ \ Mathcal {D} [t^{\ pm 1}; t^{\ pm 1};τ] $ \ MATHCAL {D} $。
Given a ring $R$, the notion of Sylvester rank function was conceived within the context of Cohn's classification theory of epic division $R$-rings. In this paper we study and describe the space of Sylvester rank functions on certain families of rings, including Dedekind domains, simple left noetherian rings and skew Laurent polynomial rings $\mathcal{D}[t^{\pm 1};τ]$ for any division ring $\mathcal{D}$ and any automorphism $τ$ of $\mathcal{D}$.