论文标题
费米昂采样:使用费米子线性光学和魔术输入状态的强大量子计算优势方案
Fermion Sampling: a robust quantum computational advantage scheme using fermionic linear optics and magic input states
论文作者
论文摘要
费米子线性光学(FLO)是量子计算的限制模型,其原始形式可有效地在经典上模拟。我们表明,当使用合适的输入状态初始化时,可以使用FLO电路来证明具有强硬度保证的量子计算优势。基于此,我们提出了一种量子优势方案,该方案是玻色子采样的费米子类似物:用魔法输入状态采样的费米昂采样。 我们在同时考虑两类电路:粒子数保存(被动)flo和Active Flo仅保留费米子奇偶校验,并且与Valiant引入的匹配电路密切相关。从数学上讲,这些电路类别可以理解为Lie Groups $ U(D)$和$ SO(2D)$的费米子表示。该观察结果使我们能够证明我们的主要技术结果。我们首先在两种类型的随机FLO电路中显示抗浓度。此外,我们证明了概率计算的强大平均案例硬度。为了实现这一目标,我们根据Movassagh最近引入的Cayley Transform的最糟糕的案例减少了最差的案例,以表现出低维生物组的表示。综上所述,这些发现提供了与随机电路采样范式相当的硬度保证。 重要的是,我们的计划还具有实现实现的潜力。被动和主动的FLO电路都与量子化学和多体物理学有关,并且已经在具有超导量子架构的原理证明实验中实施。可以通过独立作用于四个量子位的分离块并使用3个纠缠大门的简单量子电路来获得所需的量子输入状态的准备。我们还认为,由于FLO电路的结构性性质,它们可以有效地认证。
Fermionic Linear Optics (FLO) is a restricted model of quantum computation which in its original form is known to be efficiently classically simulable. We show that, when initialized with suitable input states, FLO circuits can be used to demonstrate quantum computational advantage with strong hardness guarantees. Based on this, we propose a quantum advantage scheme which is a fermionic analogue of Boson Sampling: Fermion Sampling with magic input states. We consider in parallel two classes of circuits: particle-number conserving (passive) FLO and active FLO that preserves only fermionic parity and is closely related to Matchgate circuits introduced by Valiant. Mathematically, these classes of circuits can be understood as fermionic representations of the Lie groups $U(d)$ and $SO(2d)$. This observation allows us to prove our main technical results. We first show anticoncentration for probabilities in random FLO circuits of both kind. Moreover, we prove robust average-case hardness of computation of probabilities. To achieve this, we adapt the worst-to-average-case reduction based on Cayley transform, introduced recently by Movassagh, to representations of low-dimensional Lie groups. Taken together, these findings provide hardness guarantees comparable to the paradigm of Random Circuit Sampling. Importantly, our scheme has also a potential for experimental realization. Both passive and active FLO circuits are relevant for quantum chemistry and many-body physics and have been already implemented in proof-of-principle experiments with superconducting qubit architectures. Preparation of the desired quantum input states can be obtained by a simple quantum circuit acting independently on disjoint blocks of four qubits and using 3 entangling gates per block. We also argue that due to the structured nature of FLO circuits, they can be efficiently certified.