论文标题

基于证据的事实错误纠正

Evidence-based Factual Error Correction

论文作者

Thorne, James, Vlachos, Andreas

论文摘要

本文介绍了事实错误纠正的任务:对索赔进行编辑,以便更好地支持生成的重写。这通过提供一种机制来纠正被驳斥或仅部分由证据支持的书面文本来扩展事实验证的任务。我们证明,从现有的事实检查数据集中训练事实错误校正系统是可行的,该数据集仅包含带有证据的标记索赔,但不包括证据的索赔。我们通过采用两阶段远的监督方法来实现这一目标,该方法在产生更正时将证据纳入蒙面的主张中。我们的方法基于T5变压器并使用检索证据,比使用指针复制网络和黄金证据的现有工作取得了更好的结果,从而为5倍的人类评估实例提供了准确的事实误差校正,而纱丽得分提高了0.125。该评估是根据最近的事实验证共享任务在65,000个实例的数据集上进行的,我们将其发布以实现该任务的进一步工作。

This paper introduces the task of factual error correction: performing edits to a claim so that the generated rewrite is better supported by evidence. This extends the well-studied task of fact verification by providing a mechanism to correct written texts that are refuted or only partially supported by evidence. We demonstrate that it is feasible to train factual error correction systems from existing fact checking datasets which only contain labeled claims accompanied by evidence, but not the correction. We achieve this by employing a two-stage distant supervision approach that incorporates evidence into masked claims when generating corrections. Our approach, based on the T5 transformer and using retrieved evidence, achieved better results than existing work which used a pointer copy network and gold evidence, producing accurate factual error corrections for 5x more instances in human evaluation and a .125 increase in SARI score. The evaluation is conducted on a dataset of 65,000 instances based on a recent fact verification shared task and we release it to enable further work on the task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源