论文标题

在代数整数上,这是正面特征的2个岩石元素

On algebraic integers which are 2-Salem elements in positive characteristic

论文作者

Nasr, Mabrouk, Kthiri, Hassen, Verger-Gaugry, Jean-Louis

论文摘要

贝特曼(Bateman)和杜奎特(Duquette)启动了对积极特征的塞勒姆元素的研究。这项工作将其结果扩展到了2个六个元素的元素,其最小多项式为$ y^n +λ_{n-1} y^{n-1} + \ ldots +λ_1y +λ_0\ in \ mathbb {f} $°λ_{n-1} <°λ_{n-2} = \ max_ {i \ neq n-2}°(λ_i)$。这项工作提供了他们的结果的类似物,这些元素的结果最小的多项式满足了某些要求。

Bateman and Duquette have initiated the study of Salem elements in positive characteristic. This work extends their results to 2-Salem elements whose minimal polynomials are of the type $Y^n + λ_{n-1}Y^{n-1} + \ldots+λ_1Y + λ_0 \in \mathbb{F}_q[X][Y ]$ where $n \geq2, λ_0\neq 0$ and $°λ_{n-1} < °λ_{n-2} = \max_{i\neq n-2}°(λ_i)$. This work provides an analogue of their results for 2-Salem elements whose minimal polynomials meet certain requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源