论文标题

封闭形式的Minkowski凸体和平滑弯曲边界的凸体总和

Closed-Form Minkowski Sums of Convex Bodies with Smooth Positively Curved Boundaries

论文作者

Ruan, Sipu, Chirikjian, Gregory S.

论文摘要

本文为D维欧几里得空间中的Minkowski总和的封闭形式参数公式提供了光滑的边界,并且在每个点都具有正面的截面曲率。在这些条件下,每个边界点的位置与表面正常的位置之间存在独特的关系。主要结果表示为两个定理。第一个定理在每个表面点使用单位正常矢量直接参数化Minkowski总和。尽管在数学上易于表达,但这种参数化并不总是实用的。因此,第二个定理使用未归一化的梯度得出了更有用的参数闭合形式表达式。在两个椭圆形的特殊情况下,所提出的表达与先前使用几何解释得出的表达式相同。为了检查结果,进行了两个超四个体之间的Minkowski总和的数值验证和比较。引入并证明了运动计划问题中的配置空间障碍并改善基于优化的碰撞检测算法的应用程序。

This article derives closed-form parametric formulas for the Minkowski sums of convex bodies in d-dimensional Euclidean space with boundaries that are smooth and have all positive sectional curvatures at every point. Under these conditions, there is a unique relationship between the position of each boundary point and the surface normal. The main results are presented as two theorems. The first theorem directly parameterizes the Minkowski sums using the unit normal vector at each surface point. Although simple to express mathematically, such a parameterization is not always practical to obtain computationally. Therefore, the second theorem derives a more useful parametric closed-form expression using the gradient that is not normalized. In the special case of two ellipsoids, the proposed expressions are identical to those derived previously using geometric interpretations. In order to examine the results, numerical validations and comparisons of the Minkowski sums between two superquadric bodies are conducted. Applications to generate configuration space obstacles in motion planning problems and to improve optimization-based collision detection algorithms are introduced and demonstrated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源