论文标题
与短距离相互作用的晶体中的量子传输:玻尔兹曼级极限
Quantum Transport in a Crystal With Short-Range Interactions: The Boltzmann-Grad Limit
论文作者
论文摘要
我们研究具有短距离电位的晶体中量子Lorentz气体的宏观运输特性,并表明在Boltzmann-Grad限制中,量子动力学会收敛到与线性螺栓型不兼容的随机飞行过程。我们的派生依赖于关于薄域中晶格点的统计分布的假设,该假设与量子混乱中的浆果 - 塔伯猜想密切相关。
We study the macroscopic transport properties of the quantum Lorentz gas in a crystal with short-range potentials, and show that in the Boltzmann-Grad limit the quantum dynamics converges to a random flight process which is not compatible with the linear Boltzmann equation. Our derivation relies on a hypothesis concerning the statistical distribution of lattice points in thin domains, which is closely related to the Berry-Tabor conjecture in quantum chaos.