论文标题

Feynman积分和Wilson Loops的散射幅度

Feynman Integrals and Scattering Amplitudes from Wilson Loops

论文作者

He, Song, Li, Zhenjie, Yang, Qinglin, Zhang, Chi

论文摘要

我们通过用无效的多边形威尔逊循环来利用双重性来研究$ {\ cal n} = 4 $ Super-yang-mills的Feynman积分和散射幅度。某些Feynman积分,包括一环和两环手性五角星,由超对称性Wilson Loop的Feynman图给出,在该图中可以执行循环集成并沿边缘沿边缘进行简单的积分。作为主要应用程序,我们首次进行分析计算,是通用($ n \ geq 12 $)双五角大楼的象征,该五角大楼为所有多重性提供了NMHV振幅的两环MHV振幅和组件。我们将双五角大楼表示为单循环的两倍$ \ mathrm {d} \ log $积分的积分,而整合的非平凡部分则在于后者中包含的合理化平方根。我们获得了一个非常紧凑的“代数单词”,该单词包含$ 16 $ Square根的$ 6 $代数字母,并且它们都可以很好地取消MHV振幅和NMHV组件的组合,这些组件没有方形根。除了$ 96 $代数字母外,该字母还包括$ 152 $合理信件的双形式不变组合。

We study Feynman integrals and scattering amplitudes in ${\cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagrams of a supersymmetric Wilson loop, where one can perform loop integrations and be left with simple integrals along edges. As the main application, we compute analytically for the first time, the symbol of the generic ($n\geq 12$) double pentagon, which gives two-loop MHV amplitudes and components of NMHV amplitudes to all multiplicities. We represent the double pentagon as a two-fold $\mathrm{d} \log$ integral of a one-loop hexagon, and the non-trivial part of the integration lies at rationalizing square roots contained in the latter. We obtain a remarkably compact "algebraic words" which contain $6$ algebraic letters for each of the $16$ square roots, and they all nicely cancel in combinations for MHV amplitudes and NMHV components which are free of square roots. In addition to $96$ algebraic letters, the alphabet consists of $152$ dual conformal invariant combinations of rational letters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源