论文标题

几个名称实体识别:一项综合研究

Few-Shot Named Entity Recognition: A Comprehensive Study

论文作者

Huang, Jiaxin, Li, Chunyuan, Subudhi, Krishan, Jose, Damien, Balakrishnan, Shobana, Chen, Weizhu, Peng, Baolin, Gao, Jianfeng, Han, Jiawei

论文摘要

本文提出了一项全面的研究,以有效地构建名为实体识别(NER)系统时,当可用的少数标​​记数据可用时。基于最新的基于变压器的自我监管的预训练的语言模型(PLM),我们研究了三种正交方案,以提高少数弹射设置的模型泛化能力:(1)元学习以构建不同实体类型的原型,(2)在噪声的网络数据上受到监督的预处理,以提取实体数据,以提取无元素的自然代表和(3)自我启用的自我启用,以启用依据的自我启用。还考虑了这些方案的不同组合。我们对具有各种标记数据的10个公共数据集进行了广泛的经验比较,这为未来的研究提出了有用的见解。我们的实验表明,(i)在少量学习设置中,提出的NER方案显着改善或胜过常用的基线,这是一种基于PLM的线性分类器,对域标签进行了微调; (ii)与现有方法相比,我们在很少的射击和无训练设置上创建了新的最新结果。我们将发布我们的代码和预培训模型,以进行可再现的研究。

This paper presents a comprehensive study to efficiently build named entity recognition (NER) systems when a small number of in-domain labeled data is available. Based upon recent Transformer-based self-supervised pre-trained language models (PLMs), we investigate three orthogonal schemes to improve the model generalization ability for few-shot settings: (1) meta-learning to construct prototypes for different entity types, (2) supervised pre-training on noisy web data to extract entity-related generic representations and (3) self-training to leverage unlabeled in-domain data. Different combinations of these schemes are also considered. We perform extensive empirical comparisons on 10 public NER datasets with various proportions of labeled data, suggesting useful insights for future research. Our experiments show that (i) in the few-shot learning setting, the proposed NER schemes significantly improve or outperform the commonly used baseline, a PLM-based linear classifier fine-tuned on domain labels; (ii) We create new state-of-the-art results on both few-shot and training-free settings compared with existing methods. We will release our code and pre-trained models for reproducible research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源