论文标题

自私概念之间的指数沟通分离

Exponential Communication Separations between Notions of Selfishness

论文作者

Rubinstein, Aviad, Saxena, Raghuvansh R., Thomas, Clayton, Weinberg, S. Mathew, Zhao, Junyao

论文摘要

我们考虑了在多个玩家之间实现固定的社交选择功能的问题(将每个播放器的输入$ t_i $从每个播放器$ i $中取出,并输出结果$ f(t_1,\ ldots,t_n)$),其中必须激励每个玩家遵循协议。特别是,我们研究了一项协议的沟通要求:(a)实现$ f $的$ f $,计算付款,使其遵守该协议,并使其实现$ f $(EPIC)遵守协议,并且(c)实现$ f $并以一种使其以某种方式计算付款,从而使其占主导地位的强度易变的概括(DSIC)以遵循该协议(DSIC)。 我们显示了所有这三个数量之间的指数分离,仅针对两个玩家。也就是说,我们首先构建了$ f $,以便可以在通信$ c $中实现$ f $,但是任何EPIC实施$ f $(任何付款选择)都需要通信$ \ exp(c)$。这回答了[FS09,BBS13]的公开问题。其次,我们构建了一个$ f $,以便Epic协议将$ f $与通信$ c $实现,但是所有DSIC实现$ f $都需要通信$ \ exp(c)$。

We consider the problem of implementing a fixed social choice function between multiple players (which takes as input a type $t_i$ from each player $i$ and outputs an outcome $f(t_1,\ldots, t_n)$), in which each player must be incentivized to follow the protocol. In particular, we study the communication requirements of a protocol which: (a) implements $f$, (b) implements $f$ and computes payments that make it ex-post incentive compatible (EPIC) to follow the protocol, and (c) implements $f$ and computes payments in a way that makes it dominant-strategy incentive compatible (DSIC) to follow the protocol. We show exponential separations between all three of these quantities, already for just two players. That is, we first construct an $f$ such that $f$ can be implemented in communication $c$, but any EPIC implementation of $f$ (with any choice of payments) requires communication $\exp(c)$. This answers an open question of [FS09, BBS13]. Second, we construct an $f$ such that an EPIC protocol implements $f$ with communication $C$, but all DSIC implementations of $f$ require communication $\exp(C)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源