论文标题

以2美元的循环立方田塔的启发式学

Heuristics for $2$-class Towers of Cyclic Cubic Fields

论文作者

Boston, Nigel, Bush, Michael R.

论文摘要

我们考虑最大$ 2 $ 2 $ extension $ k $的Galois Group $ g_2(k)$,其中$ k/\ mathbb {q} $是$ 3 $的循环。我们还考虑了$ g^+_ 2(k)$,其中无限允许进行分支。本着Cohen-Lenstra启发式方法的精神,我们将某些类型的Pro-2 $组确定为自然空间,其中$ g_2(k)$和$ g^+_ 2(k)$ live当$ 2 $ k $的$ 2 $ k $ as 2 $ $ 2 $时。尽管我们没有分配概率的理论方案,但我们提出数据并就此类组的分布进行一些观察和猜想。

We consider the Galois group $G_2(K)$ of the maximal unramified $2$-extension of $K$ where $K/\mathbb{Q}$ is cyclic of degree $3$. We also consider the group $G^+_2(K)$ where ramification is allowed at infinity. In the spirit of the Cohen-Lenstra heuristics, we identify certain types of pro-$2$ group as the natural spaces where $G_2(K)$ and $G^+_2(K)$ live when the $2$-class group of $K$ is $2$-generated. While we do not have a theoretical scheme for assigning probabilities, we present data and make some observations and conjectures about the distribution of such groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源