论文标题
Dalex:Python中具有交互性解释性和公平性的负责任的机器学习
dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python
论文作者
论文摘要
可用数据,计算能力以及对更高绩效的持续追求的增加导致预测模型的复杂性越来越复杂。它们的黑盒性质导致不透明的债务现象,导致歧视的风险增加,缺乏可重现性以及由于数据漂移而导致的绩效缩减。为了管理这些风险,良好的MLOP实践要求更好地验证模型性能和公平性,更高的解释性和持续监控。更深层次的透明度的必要性不仅来自科学和社会领域,而且还来自新兴的人工智能法律和法规。为了促进负责任的机器学习模型的开发,我们展示了Dalex,Dalex是一个python软件包,它实现了用于交互式模型探索的模型 - 不合骨界面。它采用了通过开发各种工具进行负责任的机器学习而制定的设计;因此,它旨在统一现有解决方案。该库的源代码和文档可在https://python.drwhy.ai/的开放许可下获得。
The increasing amount of available data, computing power, and the constant pursuit for higher performance results in the growing complexity of predictive models. Their black-box nature leads to opaqueness debt phenomenon inflicting increased risks of discrimination, lack of reproducibility, and deflated performance due to data drift. To manage these risks, good MLOps practices ask for better validation of model performance and fairness, higher explainability, and continuous monitoring. The necessity of deeper model transparency appears not only from scientific and social domains, but also emerging laws and regulations on artificial intelligence. To facilitate the development of responsible machine learning models, we showcase dalex, a Python package which implements the model-agnostic interface for interactive model exploration. It adopts the design crafted through the development of various tools for responsible machine learning; thus, it aims at the unification of the existing solutions. This library's source code and documentation are available under open license at https://python.drwhy.ai/.