论文标题
吸引子不变,蓝色瓷砖和晶体
Attractor invariants, brane tilings and crystals
论文作者
论文摘要
在calabi-yau三倍$ x $上的超对称d- brane绑定状态被广义的donaldsdon-thomas不变式计数$ω_____________k(γ)$,具体取决于Chern字符(或电磁费用)(或电磁费)$γ\ in H^*(x)$和稳定性条件(x)$(或中央费用)$ z $ z $。吸引子不变性$ω_*(γ)$是DT不变性的特殊实例,其中$ z $是吸引子稳定性条件$z_γ$(自我稳定性的通用扰动),从中可以从中为任何其他稳定性条件提供DT不变性。尽管通常很难计算,但是当$ x $是奇异的曲折calabi-yau时,这些不变性会变得可行。在这种情况下,我们调查了一些有关框架和未框架精制的DT不变式的已知结果和猜想,并明确计算吸引者不变式,以便为各种复的calabi-yau三倍,特别是当$ x $是$ x $ x $ $ x $的$ x $ crepant $ crepant $ clepant $ c $ c^3/g时,$ x $是$ x $的总空间。我们检查在所有这些情况下,$ω_*(γ)= 0 $,除非$γ$是简单表示的维数或属于偏度 - 对称的Euler形式的内核。基于小维度的计算,我们预测了所有吸引子不变性的值,从而可以解决所有稳定室中这些三倍的DT不变性的问题。我们还计算了非交换性的精制DT不变性,并确认它们是否同意熔融晶体在未精制的极限内的计数。
Supersymmetric D-brane bound states on a Calabi-Yau threefold $X$ are counted by generalized Donaldsdon-Thomas invariants $Ω_Z(γ)$, depending on a Chern character (or electromagnetic charge) $γ\in H^*(X)$ and a stability condition (or central charge) $Z$. Attractor invariants $Ω_*(γ)$ are special instances of DT invariants, where $Z$ is the attractor stability condition $Z_γ$ (a generic perturbation of self-stability), from which DT invariants for any other stability condition can be deduced. While difficult to compute in general, these invariants become tractable when $X$ is a crepant resolution of a singular toric Calabi-Yau threefold associated to a brane tiling, and hence to a quiver with potential. We survey some known results and conjectures about framed and unframed refined DT invariants in this context, and compute attractor invariants explicitly for a variety of toric Calabi-Yau threefolds, in particular when $X$ is the total space of the canonical bundle of a smooth projective surface, or when $X$ is a crepant resolution of $C^3/G$. We check that in all these cases, $Ω_*(γ)=0$ unless $γ$ is the dimension vector of a simple representation or belongs to the kernel of the skew-symmetrized Euler form. Based on computations in small dimensions, we predict the values of all attractor invariants, thus potentially solving the problem of counting DT invariants of these threefolds in all stability chambers. We also compute the non-commutative refined DT invariants and verify that they agree with the counting of molten crystals in the unrefined limit.