论文标题

相互作用玻色子在几体极限中的动态定位

Dynamical localization of interacting bosons in the few-body limit

论文作者

Chicireanu, Radu, Rançon, Adam

论文摘要

量子踢转子是众所周知的,可以在非相互作用极限中显示动态定位。在相互作用的情况下,虽然平均场(Gross-Pitaevskii)近似显示动态定位的破坏,但其命运仍然在平均场外争论。在这里,我们研究了几个体型限制的踢lieb-Liniger模型。我们表明,对于任何相互作用的强度,两个踢相互作用的玻色子总是动态定位的,因为系统的能量长期饱和。但是,与非相反的极限相反,玻色子的动量分布$π(k)$不是指数级的本地化,而是与$ \ Mathcal c/k^4 $衰减,这是与TAN的触点$ \ \ \ Mathcal C $相互作用的预期,长期以来仍然有限。我们讨论我们的结果将如何影响踢相互作用玻色子的实验研究。

The quantum kicked rotor is well-known to display dynamical localization in the non-interacting limit. In the interacting case, while the mean-field (Gross-Pitaevskii) approximation displays a destruction of dynamical localization, its fate remains debated beyond mean-field. Here we study the kicked Lieb-Liniger model in the few-body limit. We show that for any interaction strength, two kicked interacting bosons always dynamically localize, in the sense that the energy of the system saturates at long time. However, contrary to the non-interacting limit, the momentum distribution $Π(k)$ of the bosons is not exponentially localized, but decays as $\mathcal C/k^4$, as expected for interacting quantum particles, with Tan's contact $\mathcal C$ which remains finite at long time. We discuss how our results will impact the experimental study of kicked interacting bosons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源