论文标题

在近期量子设备上检测和量化纠缠

Detecting and quantifying entanglement on near-term quantum devices

论文作者

Wang, Kun, Song, Zhixin, Zhao, Xuanqiang, Wang, Zihe, Wang, Xin

论文摘要

量子纠缠是量子技术的关键资源,其量化是当前嘈杂的中间尺度量子(NISQ)时代的重要任务。本文结合了混合量子古典计算和准概率分解,以提出两种变异量子算法,称为变异纠缠检测(VED)和变异对数否估计(VLNE),以分别检测和量化近期量子设备,以检测和量化。 VED利用正面地图标准,工作如下。首先,它将正面图分解为可在近期量子设备上实现的量子操作的组合。然后,它可以变体估计最终状态的最低特征值,该值是通过对目标状态执行这些可实施的操作获得的,并平均输出状态。提出了确定性和概率方法来计算平均值。最后,它断言,如果优化的最小特征值为负,则目标状态是纠缠的。 VLNE建立在转置图的线性分解为Pauli项和最近提出的痕量距离估计算法上。它在变体估计了众所周知的对数消极纠缠措施,可以应用于量化近期量子设备上的纠缠。在贝尔状态,各向同性状态和Breuer状态的实验和数值结果显示了拟议的纠缠检测和定量方法的有效性。

Quantum entanglement is a key resource in quantum technology, and its quantification is a vital task in the current Noisy Intermediate-Scale Quantum (NISQ) era. This paper combines hybrid quantum-classical computation and quasi-probability decomposition to propose two variational quantum algorithms, called Variational Entanglement Detection (VED) and Variational Logarithmic Negativity Estimation (VLNE), for detecting and quantifying entanglement on near-term quantum devices, respectively. VED makes use of the positive map criterion and works as follows. Firstly, it decomposes a positive map into a combination of quantum operations implementable on near-term quantum devices. It then variationally estimates the minimal eigenvalue of the final state, obtained by executing these implementable operations on the target state and averaging the output states. Deterministic and probabilistic methods are proposed to compute the average. At last, it asserts that the target state is entangled if the optimized minimal eigenvalue is negative. VLNE builds upon a linear decomposition of the transpose map into Pauli terms and the recently proposed trace distance estimation algorithm. It variationally estimates the well-known logarithmic negativity entanglement measure and could be applied to quantify entanglement on near-term quantum devices. Experimental and numerical results on the Bell state, isotropic states, and Breuer states show the validity of the proposed entanglement detection and quantification methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源