论文标题
Landau解决方案在$ l^p $ - 奔放下的渐近稳定性
Asymptotic stability of Landau solutions to Navier-Stokes system under $L^p$-perturbations
论文作者
论文摘要
在本文中,我们表明,在$ l^3 $ perturbations下,Navier-Stokes系统的Landau解决方案在渐近稳定。我们在$l_σ^3 $空间中提供了本地解决方案的本地解决方案,并在$l_σ^3 $空间中提供少量初始数据,并研究了所有$ q> 3 $ q>> 3的$ l^q $衰减。
In this paper, we show that Landau solutions to the Navier-Stokes system are asymptotically stable under $L^3$-perturbations. We give the local well-posedness of solutions to the perturbed system with initial data in $L_σ^3$ space and the global well-posedness with small initial data in $L_σ^3$ space, together with a study of the $L^q$ decay for all $q>3.$ Moreover, we have also studied the local well-posedness, global well-posedness and stability in $L^p$ spaces for $3<p<\infty$.