论文标题

关于芬奇 - 晶体几何形状下各向异性的影响的研究

A study on the effect of anisotropy under Finch-Skea geometry

论文作者

Das, Shyam, Chakraborty, Koushik, Baskey, Lipi, Ray, Saibal

论文摘要

Finch-Skea Ansatz描述相对论恒星模型的普及鼓励我们研究爱因斯坦田间方程的分析解决方案。考虑到相应的两种情况后,我们已经向场方程提出了一类精确解:(i)各向异性参数的正值,以及(ii)没有任何各向异性。内部溶液与Schwarzschild外部溶液的平滑匹配有助于我们确定常数。如此获得的解决方案的物理特征已经以图形和数值研究了特定的PULSAR $ 4U〜1608-52 $(质量= $ 1.57^{+0.30} _ { - 0.29} 〜M_ \ odot $,Radius $ and Radius $ and Radius = $ 9.8 \ pm 1.8〜km $)。还讨论了该模型的稳定性条件,但是该模型对于零各向异性​​的稳定性是稳定的。

The popularity of the Finch-Skea ansatz to describe relativistic stellar model have encouraged us to study the analytic solutions of the Einstein field equation. We have presented a class of exact solutions to the field equations after considering the corresponding two cases: (i) positive value of anisotropic parameter, and (ii) absence of any anisotropy. Smooth matching of the interior solutions with the Schwarzschild exterior solution helped us to determine constants. The physical features of the solutions thus obtained have been studied both graphically and numerically with the specific pulsar $4U~1608-52$ (Mass = $1.57^{+0.30}_{-0.29}~M_\odot$ and radius = $9.8\pm 1.8~km$). The stability conditions for the model have also been discussed, however the model is found to be stable for zero anisotropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源