论文标题
实际上是Cohen的同源和组合方面 - Macaulay滑轮
Homological and combinatorial aspects of virtually Cohen--Macaulay sheaves
论文作者
论文摘要
当研究平滑的投影式感谢您的Cox环上的分级模块$ m $ $ x $时,有两种标准类型的分辨率通常用于收集信息:$ m $的免费分辨率和矢量捆绑包分辨率。每种方法都有自己的挑战。有几何信息可以使自由分辨率无法编码,而矢量束分辨率可以使用代数和组合技术抗拒研究。最近,伯克施(Berkesch),埃尔曼(Erman)和史密斯(Smith)提出了虚拟分辨率,这些决议捕获了理想的几何信息,并且也适合代数和组合研究。虚拟决议的理论包括一个虚拟的cohen-macaulay属性的概念,尽管用于评估哪些模块实际上是Cohen的工具,直到最近才开始开发。 在本文中,我们以两种相关方式继续该研究计划。首先是,当$ x $是投影空间的产物时,我们生产了一类新的新类,几乎是Cohen-Macaulay Stanley-Reisner Rings,我们通过适当的虚拟决议进行了明确的构造,这些构造实际上是Cohen-Macaulay,以反映了基础组合结构。第二个是,对于任意光滑的投射紫色的折叠品种$ x $,我们开发了用于评估虚拟Cohen-Macaulay属性的同源工具。其中一些工具提供了排除标准,而另一些工具是制定适当短暂虚拟分辨率的建设性方法。我们还使用这些工具来建立算术,几何和实际上cohen--macaulay属性之间的关系。
When studying a graded module $M$ over the Cox ring of a smooth projective toric variety $X$, there are two standard types of resolutions commonly used to glean information: free resolutions of $M$ and vector bundle resolutions of its sheafification. Each approach comes with its own challenges. There is geometric information that free resolutions fail to encode, while vector bundle resolutions can resist study using algebraic and combinatorial techniques. Recently, Berkesch, Erman, and Smith introduced virtual resolutions, which capture desirable geometric information and are also amenable to algebraic and combinatorial study. The theory of virtual resolutions includes a notion of a virtually Cohen--Macaulay property, though tools for assessing which modules are virtually Cohen--Macaulay have only recently started to be developed. In this paper, we continue this research program in two related ways. The first is that, when $X$ is a product of projective spaces, we produce a large new class of virtually Cohen--Macaulay Stanley--Reisner rings, which we show to be virtually Cohen--Macaulay via explicit constructions of appropriate virtual resolutions reflecting the underlying combinatorial structure. The second is that, for an arbitrary smooth projective toric variety $X$, we develop homological tools for assessing the virtual Cohen--Macaulay property. Some of these tools give exclusionary criteria, and others are constructive methods for producing suitably short virtual resolutions. We also use these tools to establish relationships among the arithmetically, geometrically, and virtually Cohen--Macaulay properties.