论文标题
用于陡坡晶体管的二维冷电子传输
Two-dimensional Cold Electron Transport for Steep-slope Transistors
论文作者
论文摘要
常规的三维(3D)或二维(2D)半导体中的室温费米 - 迪拉克电子热激发产生的热电子具有相对较长的热尾能的热电子。这些热电子设定了一个基本障碍物,称为“ Boltzmann暴政”,该障碍限制了子阈值摇摆(SS),因此3D和2D现场效应晶体管(FETS)的最小功耗。在这里,我们研究了一种新型石墨烯(GR)的冷电子注入,其中GR充当狄拉克的来源,可在室温下为冷电子提供局部电子密度分布和短尾巴。这些冷电子对应于单层MOS2中的电子冷却效应,有效电子温度约为145 k,这使得降低传输因子,从而使陡峭的斜坡切换(在室温下在室温下为29 mV/十年持续30年),用于单层MOS2。特别是,与使用2D或3D通道材料的传统陡坡技术(例如隧穿Fets或负电容FET)相比,可以实现创纪录的高低60 mV/十年的电流密度(超过1μa/μm)。我们的工作展示了2D Dirac-Source Cold Electron晶体管作为创新的陡峭晶体管概念的巨大潜力,并为2D材料提供了新的机会,以实现未来的节能纳米电子学。
Room-temperature Fermi-Dirac electron thermal excitation in conventional three-dimensional (3D) or two-dimensional (2D) semiconductors generates hot electrons with a relatively long thermal tail in energy distribution. These hot electrons set a fundamental obstacle known as the "Boltzmann tyranny" that limits the subthreshold swing (SS) and therefore the minimum power consumption of 3D and 2D field-effect transistors (FETs). Here, we investigated a novel graphene (Gr)-enabled cold electron injection where the Gr acts as the Dirac source to provide the cold electrons with a localized electron density distribution and a short thermal tail at room temperature. These cold electrons correspond to an electronic cooling effect with the effective electron temperature of ~145 K in the monolayer MoS2, which enable the transport factor lowering and thus the steep-slope switching (across for 3 decades with a minimum SS of 29 mV/decade at room temperature) for a monolayer MoS2 FET. Especially, a record-high sub-60-mV/decade current density (over 1 μA/μm) can be achieved compared to conventional steep-slope technologies such as tunneling FETs or negative capacitance FETs using 2D or 3D channel materials. Our work demonstrates the great potential of 2D Dirac-source cold electron transistor as an innovative steep-slope transistor concept, and provides new opportunities for 2D materials toward future energy-efficient nanoelectronics.