论文标题

学习通用时空深度特征表示无引用视频质量评估

Learning Generalized Spatial-Temporal Deep Feature Representation for No-Reference Video Quality Assessment

论文作者

Chen, Baoliang, Zhu, Lingyu, Li, Guo, Fan, Hongfei, Wang, Shiqi

论文摘要

在这项工作中,我们提出了一种无引用的视频质量评估方法,旨在实现跨核,分辨率和-Frame速率质量预测的高概要能力。特别是,我们通过在时空域中学习有效的特征表示来评估视频的质量。在空间域中,为了解决分辨率和内容变化,我们对高斯分布限制对质量特征施加了限制。统一的分布可以显着减少不同视频样本之间的域间隙,从而导致更广泛的质量特征表示。沿着时间维度,受视觉感知机制的启发,我们通过涉及短期和长期记忆来汇总框架级质量来提出一个金字塔时间聚集模块。实验表明,我们的方法的表现优于跨数据库设置上的最新方法,并在内部内配置上实现了可比的性能,证明了所提出方法的高恢复能力。

In this work, we propose a no-reference video quality assessment method, aiming to achieve high-generalization capability in cross-content, -resolution and -frame rate quality prediction. In particular, we evaluate the quality of a video by learning effective feature representations in spatial-temporal domain. In the spatial domain, to tackle the resolution and content variations, we impose the Gaussian distribution constraints on the quality features. The unified distribution can significantly reduce the domain gap between different video samples, resulting in a more generalized quality feature representation. Along the temporal dimension, inspired by the mechanism of visual perception, we propose a pyramid temporal aggregation module by involving the short-term and long-term memory to aggregate the frame-level quality. Experiments show that our method outperforms the state-of-the-art methods on cross-dataset settings, and achieves comparable performance on intra-dataset configurations, demonstrating the high-generalization capability of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源