论文标题
几乎超级霍瓦诺夫光谱
Almost-extreme Khovanov spectra
论文作者
论文摘要
我们将函子从立方体介绍到Burnside 2类别,并证明它等于Lipshitz和Sarkar在几乎超级量子分级中给出的Khovanov Spectrum。我们将该函子分解为简单络合物。这种分解使我们能够计算出几乎超级khovanov谱的均匀类型,而无需交替对。
We introduce a functor from the cube to the Burnside 2-category and prove that it is equivalent to the Khovanov spectrum given by Lipshitz and Sarkar in the almost-extreme quantum grading. We provide a decomposition of this functor into simplicial complexes. This decomposition allows us to compute the homotopy type of the almost-extreme Khovanov spectra of diagrams without alternating pairs.