论文标题

将哈密顿力学的概括性概括为三维相空间

Generalization of Hamiltonian Mechanics to a Three Dimensional Phase Space

论文作者

Sato, Naoki

论文摘要

经典的哈密顿力学是通过泊松支架对哈密顿功能的作用来实现的。哈密​​顿功能是系统的运动(能量)常数。泊松支架的性质封装在封闭的二阶差分形式的符号2形式中。由于闭合,Hamiltonian流程得以保留,并通过Lie-Darboux定理在相空间上分配了一个不变的(Liouville)度量。在本文中,我们提出了将古典哈密顿力学的概括为三维相空间:经典的泊松支架用作用于一对汉密尔顿功能的通用泊松支架代替,而符号2形式则由同型3格式代替。我们表明,使用符号3形式的闭合,结果类似于经典的lie-darboux定理:在局部,存在平滑的坐标,使得符号3型的组件是常数,并且相位空间具有保留的体积元素。此外,与经典理论一样,广义泊松支架的雅各比身份数学表达了相关的符号形式的封闭。结果,持续的偏度对称三阶违反张量总是定义广义的泊松支架。这与哈密顿力学的概括相反,将基本身份替代了雅各比身份的替代。特别是,我们发现基本身份代表的是比符号3形式的闭合更强大的要求。

Classical Hamiltonian mechanics is realized by the action of a Poisson bracket on a Hamiltonian function. The Hamiltonian function is a constant of motion (the energy) of the system. The properties of the Poisson bracket are encapsulated in the symplectic 2-form, a closed second order differential form. Due to closure, the symplectic 2-form is preserved by the Hamiltonian flow, and it assigns an invariant (Liouville) measure on the phase space through the Lie-Darboux theorem. In this paper we propose a generalization of classical Hamiltonian mechanics to a three-dimensional phase space: the classical Poisson bracket is replaced with a generalized Poisson bracket acting on a pair of Hamiltonian functions, while the symplectic 2-form is replaced by a symplectic 3-form. We show that, using the closure of the symplectic 3-form, a result analogous to the classical Lie-Darboux theorem holds: locally, there exist smooth coordinates such that the components of the symplectic 3-form are constants, and the phase space is endowed with a preserved volume element. Furthermore, as in the classical theory, the Jacobi identity for the generalized Poisson bracket mathematically expresses the closure of the associated symplectic form. As a consequence, constant skew-symmetric third order contravariant tensors always define generalized Poisson brackets. This is in contrast with generalizations of Hamiltonian mechanics postulating the fundamental identity as replacement for the Jacobi identity. In particular, we find that the fundamental identity represents a stronger requirement than the closure of the symplectic 3-form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源