论文标题

观察三胞胎超导性$ _2 $/tisi $ _2 $异构结构

Observation of triplet superconductivity in CoSi$_2$/TiSi$_2$ heterostructures

论文作者

Chiu, Shao-Pin, Tsuei, C. C., Yeh, Sheng-Shiuan, Zhang, Fu-Chun, Kirchner, Stefan, Lin, Juhn-Jong

论文摘要

非常规的超导性,尤其是三胞胎超导性,是拓扑材料和量子技术研究的前沿和中心。在这里,我们报告了我们对非磁性cosi $ _2 $/tisi $ _2 $异质结构在硅上观察到三胞胎超导性的观察。 COSI $ _2 $在临界温度下进行急剧的超导过渡$ T_C \ $ 1.5 k,而Tisi $ _2 $是普通金属。我们调查了两个末端COSI $ _2 $/TISI $ _2 $隧道连接和三端T形COSI $ _2 $ _2 $/TISI $ _2 $超导接近结构的电导光谱。我们报告了COSI $ _2 $异质结构中出乎意料的大型自旋轨道耦合。在$ t_c $以下,我们观察到(1)在宽阔的驼峰顶上一个狭窄的零偏置电导峰,伴随着隧道交界处的两个对称侧倾角,(2)T形结构中的零零偏置电导峰,以及(3)连接磁场的滞后。这三个独立和互补的观察结果表明手性$ p $ - cosi $ _2 $/tisi $ _2 $异质结构的配对。这种手性三重超导性和COSI $ _2 $和TISI $ _2 $的出色制造兼容性与当今的硅Integrated-Circuit Technology有助于在量子计算设备中进行全面可扩展性。

Unconventional superconductivity and in particular triplet superconductivity have been front and center of topological materials and quantum technology research. Here we report our observation of triplet superconductivity in nonmagnetic CoSi$_2$/TiSi$_2$ heterostructures on silicon. CoSi$_2$ undergoes a sharp superconducting transition at a critical temperature $T_c \approx$ 1.5 K, while TiSi$_2$ is a normal metal. We investigate conductance spectra of both two-terminal CoSi$_2$/TiSi$_2$ tunnel junctions and three-terminal T-shaped CoSi$_2$/TiSi$_2$ superconducting proximity structures. We report an unexpectedly large spin-orbit coupling in CoSi$_2$ heterostructures. Below $T_c$, we observe (1) a narrow zero-bias conductance peak on top of a broad hump, accompanied by two symmetric side dips in the tunnel junctions, (2) a narrow zero-bias conductance peak in T-shaped structures, and (3) hysteresis in the junction magnetoresistance. These three independent and complementary observations are indicative of chiral $p$-wave pairing in CoSi$_2$/TiSi$_2$ heterostructures. This chiral triplet superconductivity and the excellent fabrication compatibility of CoSi$_2$ and TiSi$_2$ with present-day silicon integrated-circuit technology facilitate full scalability for potential use in quantum-computing devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源