论文标题
代数蒙哥马利杨问题和级联猜想
Algebraic Montgomery-Yang problem and cascade conjecture
论文作者
论文摘要
称为代数的蒙哥马利 - 杨问题的猜想仍然开放,对于合理的$ \ mathbb {q} $ - 具有循环商奇异性的同源性投影平面,具有足够的典型分裂。所有已知的这样的表面都有一种特殊的异性行为,称为级联。在本说明中,假设喀斯喀特猜想假设我们建立了代数的蒙哥马利 - 杨问题,则声称每个理性$ \ mathbb {q} $ - 同源性投影平面,其商人的奇异性具有很大的典型分裂,均可承认级联。
The conjecture called algebraic Montgomery-Yang problem is still open for rational $\mathbb{Q}$-homology projective planes with cyclic quotient singularities having ample canonical divisor. All known such surfaces have a special birational behavior called a cascade. In this note, we establish algebraic Montgomery-Yang problem assuming the cascade conjecture, which claims that every rational $\mathbb{Q}$-homology projective planes with quotient singularities having ample canonical divisor admits a cascade.