论文标题
物理学指导机器学习使用简化的理论
Physics guided machine learning using simplified theories
论文作者
论文摘要
机器学习的最新应用,尤其是深度学习,激发了应对物理科学中统计推断方法的普遍性的需求。在这封信中,我们引入了一个模块化物理学指导的机器学习框架,以提高此类数据驱动的预测引擎的准确性。我们方法中的主要思想是通过基础学习过程来增强简化理论的知识。为了强调它们的身体重要性,我们的体系结构包括在中间层而不是在输入层中添加某些功能。为了证明我们的方法,我们通过增强潜在流程理论选择了一个规范的空运空气动力学问题。我们包括通过面板方法获得的功能,该功能可以在我们的培训过程中有效地计算出可用于看不见的配置的功能。通过解决普遍性问题,我们的结果表明,提出的功能增强方法可以在许多科学机器学习应用中有效使用,尤其是对于可以使用理论,经验或简化模型来指导学习模块的系统。
Recent applications of machine learning, in particular deep learning, motivate the need to address the generalizability of the statistical inference approaches in physical sciences. In this letter, we introduce a modular physics guided machine learning framework to improve the accuracy of such data-driven predictive engines. The chief idea in our approach is to augment the knowledge of the simplified theories with the underlying learning process. To emphasise on their physical importance, our architecture consists of adding certain features at intermediate layers rather than in the input layer. To demonstrate our approach, we select a canonical airfoil aerodynamic problem with the enhancement of the potential flow theory. We include features obtained by a panel method that can be computed efficiently for an unseen configuration in our training procedure. By addressing the generalizability concerns, our results suggest that the proposed feature enhancement approach can be effectively used in many scientific machine learning applications, especially for the systems where we can use a theoretical, empirical, or simplified model to guide the learning module.