论文标题
无监督的深度聚类和增强学习可以通过非常小的训练组准确地分割MRI脑肿瘤
Unsupervised deep clustering and reinforcement learning can accurately segment MRI brain tumors with very small training sets
论文作者
论文摘要
目的:医学成像中的病变细分是评估治疗反应的关键。我们最近表明,可以将增强学习应用于放射学图像以进行病变定位。此外,我们证明了强化学习解决了有监督深度学习的重要局限性。也就是说,它可以消除大量带注释的培训数据的要求,并可以提供有价值的直觉,而没有监督的方法。但是,我们没有解决病变/利益分割的基本任务。在这里,我们介绍了一种方法,该方法将无监督的深度学习聚类与增强学习学习以将大脑病变细分为MRI。 材料和方法:我们最初使用无监督的深度学习聚类群集图像,以生成每个MRI图像的候选病变面膜。然后,用户为10个培训图像选择了最佳面具。然后,我们培训了一种增强学习算法以选择口罩。我们在10张图像的单独测试集上测试了相应的训练的深Q网络。为了进行比较,我们还在同一组培训/测试图像上训练和测试了U-NET监督深度学习网络。 结果:虽然监督方法迅速过于拟合训练数据,并且在测试集(平均骰子得分16%)上的表现较差,但无监督的深度聚类和强化学习的平均骰子得分为83%。 结论:我们已经证明了无监督的深度聚类和强化学习以细分脑肿瘤的原则证明。该方法代表了与人类的AI,需要放射科医生的最少输入,而无需手动注释。
Purpose: Lesion segmentation in medical imaging is key to evaluating treatment response. We have recently shown that reinforcement learning can be applied to radiological images for lesion localization. Furthermore, we demonstrated that reinforcement learning addresses important limitations of supervised deep learning; namely, it can eliminate the requirement for large amounts of annotated training data and can provide valuable intuition lacking in supervised approaches. However, we did not address the fundamental task of lesion/structure-of-interest segmentation. Here we introduce a method combining unsupervised deep learning clustering with reinforcement learning to segment brain lesions on MRI. Materials and Methods: We initially clustered images using unsupervised deep learning clustering to generate candidate lesion masks for each MRI image. The user then selected the best mask for each of 10 training images. We then trained a reinforcement learning algorithm to select the masks. We tested the corresponding trained deep Q network on a separate testing set of 10 images. For comparison, we also trained and tested a U-net supervised deep learning network on the same set of training/testing images. Results: Whereas the supervised approach quickly overfit the training data and predictably performed poorly on the testing set (16% average Dice score), the unsupervised deep clustering and reinforcement learning achieved an average Dice score of 83%. Conclusion: We have demonstrated a proof-of-principle application of unsupervised deep clustering and reinforcement learning to segment brain tumors. The approach represents human-allied AI that requires minimal input from the radiologist without the need for hand-traced annotation.