论文标题
用于多元化建议的混合匪徒框架
A Hybrid Bandit Framework for Diversified Recommendation
论文作者
论文摘要
交互式推荐系统通过接收及时的用户反馈来更新建议策略,从而使用户参与推荐过程。因此,它们被广泛用于实际应用程序方案。以前的交互式建议方法主要集中于学习用户对项目集相关性属性的个性化偏好。但是,通常会忽略用户对项目集的多样性属性的个性化偏好的调查。为了克服这个问题,我们提出了线性模块化分散匪(LMDB)框架,该框架是一种在线学习设置,用于优化模块化功能和分散功能的组合。具体而言,LMDB采用模块化函数来对每个项目的相关性属性进行建模,并且分散函数来描述项目集的多样性属性。此外,我们还开发了一种学习算法,称为线性模块化混合(LMDH),以解决LMDB问题并在其N步遗憾中获得无差距。对实际数据集进行了广泛的实验,以证明拟议的LMDB框架在平衡建议准确性和多样性方面的有效性。
The interactive recommender systems involve users in the recommendation procedure by receiving timely user feedback to update the recommendation policy. Therefore, they are widely used in real application scenarios. Previous interactive recommendation methods primarily focus on learning users' personalized preferences on the relevance properties of an item set. However, the investigation of users' personalized preferences on the diversity properties of an item set is usually ignored. To overcome this problem, we propose the Linear Modular Dispersion Bandit (LMDB) framework, which is an online learning setting for optimizing a combination of modular functions and dispersion functions. Specifically, LMDB employs modular functions to model the relevance properties of each item, and dispersion functions to describe the diversity properties of an item set. Moreover, we also develop a learning algorithm, called Linear Modular Dispersion Hybrid (LMDH) to solve the LMDB problem and derive a gap-free bound on its n-step regret. Extensive experiments on real datasets are performed to demonstrate the effectiveness of the proposed LMDB framework in balancing the recommendation accuracy and diversity.