论文标题

无监督的实时视频增强的有效反复反复发生的对抗框架

An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time Video Enhancement

论文作者

Fuoli, Dario, Huang, Zhiwu, Paudel, Danda Pani, Van Gool, Luc, Timofte, Radu

论文摘要

视频增强是一个具有挑战性的问题,比剧照更重要,这主要是由于计算成本较高,数据量较大以及在时空域中达到一致性的难度。实际上,这些挑战通常与缺乏示例对相结合,这会抑制监督学习策略的应用。为了应对这些挑战,我们提出了一个有效的对抗视频增强框架,该框架直接从未配对的视频示例中学习。特别是,我们的框架引入了新的复发细胞,这些细胞由交织的局部和全局模块组成,用于隐式空间和时间信息的集成。所提出的设计使我们的复发单元可以有效地跨帧传播时空信息,并减少对高复杂性网络的需求。我们的设置使以循环对抗性方式从不配对的视频中学习,在所有体系结构中都采用了拟议的复发单元。通过引入一个同时了解源和目标域的联合分布的单个歧视者来完成有效的训练。增强结果表明,在视觉质量,定量指标和推理速度方面,所提出的视频增强器比最新方法的明显优势。值得注意的是,我们的视频增强器能够增强全能视频(1080x1920)的每秒35帧。

Video enhancement is a challenging problem, more than that of stills, mainly due to high computational cost, larger data volumes and the difficulty of achieving consistency in the spatio-temporal domain. In practice, these challenges are often coupled with the lack of example pairs, which inhibits the application of supervised learning strategies. To address these challenges, we propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples. In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information. The proposed design allows our recurrent cells to efficiently propagate spatio-temporal information across frames and reduces the need for high complexity networks. Our setting enables learning from unpaired videos in a cyclic adversarial manner, where the proposed recurrent units are employed in all architectures. Efficient training is accomplished by introducing one single discriminator that learns the joint distribution of source and target domain simultaneously. The enhancement results demonstrate clear superiority of the proposed video enhancer over the state-of-the-art methods, in all terms of visual quality, quantitative metrics, and inference speed. Notably, our video enhancer is capable of enhancing over 35 frames per second of FullHD video (1080x1920).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源