论文标题

使用静态场梯度NMR对时间依赖性扩散的单发测量

A single-shot measurement of time-dependent diffusion over sub-millisecond timescales using static field gradient NMR

论文作者

Cai, Teddy X., Williamson, Nathan H., Witherspoon, Velencia J., Ravin, Rea, Basser, Peter J.

论文摘要

使用NMR静态梯度,时期的回声列车采集(SG-TIETA)框架,在单个镜头中通过子毫秒尺度探测时间相关的扩散行为。该方法通过离散地将$π$ -Pulse间距递增以同时避免异位效应并探测一系列时间标准($ 50-500 $ MICROCECONDS),从而扩展了静态场梯度下的Carr-Purcell-Meiboom-Gill(CPMG)周期。脉冲间距是根据派生规则集进行了优化的。研究了脉冲不准确性的剩余作用,并发现在不同扩散率的纯液体中是一致的:水,脱烷和octanol-1。开发了脉冲精度校正。 Instantaneous diffusivity, $D_{\mathrm{inst}}(t)$, curves (i.e., half of the time derivative of the mean-squared displacement in the gradient direction), are recovered from pulse accuracy-corrected SG-TIETA decays using a model-free, log-linear least squares inversion method validated by Monte Carlo simulations.描述了信号平均1分钟实验。纯$ d _ {\ mathrm {inst}}(t)$是在纯的十二甲基环甲硅烷基础上测量的微米顺序的障碍。

Time-dependent diffusion behavior is probed over sub-millisecond timescales in a single shot using an NMR static gradient, time-incremented echo train acquisition (SG-TIETA) framework. The method extends the Carr-Purcell-Meiboom-Gill (CPMG) cycle under a static field gradient by discretely incrementing the $π$-pulse spacings to simultaneously avoid off-resonance effects and probe a range of timescales ($50 - 500$ microseconds). Pulse spacings are optimized based on a derived ruleset. The remaining effects of pulse inaccuracy are examined and found to be consistent across pure liquids of different diffusivities: water, decane, and octanol-1. A pulse accuracy correction is developed. Instantaneous diffusivity, $D_{\mathrm{inst}}(t)$, curves (i.e., half of the time derivative of the mean-squared displacement in the gradient direction), are recovered from pulse accuracy-corrected SG-TIETA decays using a model-free, log-linear least squares inversion method validated by Monte Carlo simulations. A signal-averaged, 1-minute experiment is described. A flat $D_{\mathrm{inst}}(t)$ is measured on pure dodecamethylcyclohexasiloxane whereas decreasing $D_{\mathrm{inst}}(t)$ are measured on yeast suspensions, consistent with the expected short-time $D_{\mathrm{inst}}(t)$ behavior for confining microstructural barriers on the order of microns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源