论文标题

Battpower工具箱:记忆效率和高性能多周期交流AC最佳功率流求解器

BATTPOWER Toolbox: Memory-Efficient and High-Performance Multi-Period AC Optimal Power Flow Solver

论文作者

Zaferanlouei, Salman, Farahmand, Hossein, Vadlamudi, Vijay Venu, Korpås, Magnus

论文摘要

随着引入大量可再生能源和存储设备,必须改进传统的电网操作过程,以使安全,可靠,快速响应迅速且具有成本效益,并且在这方面,电力流求解器是必不可少的。在本文中,我们引入了一个基于内点的(IP)多个周期AC最佳功率流(MPOPF)求解器,用于整合固定储能系统(SESS)和电动汽车(EV)。主要方法基于:1)Lagrangian子问题的部分微分方程的分析和精确计算,以及2)在IP算法中利用Newton-Raphson方法的系数矩阵的稀疏结构和模式。从计算效率的角度来看,提出了并详细介绍了在几个基准测试系统上应用建议方法在几个基准测试系统上的广泛结果。我们将所提出的Schur-Complent算法的计算性能与直接稀疏的LU解决方案进行了比较。进行比较是出于两个不同的应用目的:SESS和EV。结果表明,与直接LU求解器相比,SCER-COMPLENT算法的实质性计算性能在两个案例和EV的情况下都增加时的直接LU求解器。同样,讨论了一些计算绩效的情况。

With the introduction of massive renewable energy sources and storage devices, the traditional process of grid operation must be improved in order to be safe, reliable, fast responsive and cost efficient, and in this regard power flow solvers are indispensable. In this paper, we introduce an Interior Point-based (IP) Multi-Period AC Optimal Power Flow (MPOPF) solver for the integration of Stationary Energy Storage Systems (SESS) and Electric Vehicles (EV). The primary methodology is based on: 1) analytic and exact calculation of partial differential equations of the Lagrangian sub-problem, and 2) exploiting the sparse structure and pattern of the coefficient matrix of Newton-Raphson approach in the IP algorithm. Extensive results of the application of proposed methods on several benchmark test systems are presented and elaborated, where the advantages and disadvantages of different existing algorithms for the solution of MPOPF, from the standpoint of computational efficiency, are brought forward. We compare the computational performance of the proposed Schur-Complement algorithm with a direct sparse LU solver. The comparison is performed for two different applicational purposes: SESS and EV. The results suggest the substantial computational performance of Schur-Complement algorithm in comparison with that of a direct LU solver when the number of storage devices and optimisation horizon increase for both cases of SESS and EV. Also, some situations where computational performance is inferior are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源