论文标题

振荡器系统中的Arnol'D舌头,具有不均匀的空间驾驶

Arnol'd Tongues in Oscillator Systems with Nonuniform Spatial Driving

论文作者

Golden, Alexander, Sgro, Allyson E., Mehta, Pankaj

论文摘要

非线性振荡器系统在生物学和物理学上无处不在,它们的控制是许多实验系统的实际问题。在这里,我们在两个模型的空间耦合振荡器的背景下研究了这个问题:复杂的Ginzburg-Landau方程(CGLE)和CGLE的概括,其中振荡器通过外部介质(EMCGLE)耦合。我们专注于在时空和时间上都不同的外部控制驱动器。我们发现,驱动信号的空间分布控制振荡器同步到驱动器的频率范围,并且边界条件强烈影响与CGLE的外部驱动器同步。我们的计算还表明,EMCGLE具有低密度状态,在该状态下,可以同步以低驱动幅度同步。我们研究了这些模型的分叉结构,发现它们与驱动的库拉莫托模型的结果非常相似,后者没有空间结构。最后,我们讨论了结果对控制耦合振荡器系统的含义,例如社交变形虫\ emph {dictyostelium}和使用空间结构的外部驱动器的BZ催化粒子的种群。

Nonlinear oscillator systems are ubiquitous in biology and physics, and their control is a practical problem in many experimental systems. Here we study this problem in the context of the two models of spatially-coupled oscillators: the complex Ginzburg-Landau equation (CGLE) and a generalization of the CGLE in which oscillators are coupled through an external medium (emCGLE). We focus on external control drives that vary in both space and time. We find that the spatial distribution of the drive signal controls the frequency ranges over which oscillators synchronize to the drive and that boundary conditions strongly influence synchronization to external drives for the CGLE. Our calculations also show that the emCGLE has a low density regime in which a broad range of frequencies can be synchronized for low drive amplitudes. We study the bifurcation structure of these models and find that they are very similar to results for the driven Kuramoto model, a system with no spatial structure. We conclude by discussing the implications of our results for controlling coupled oscillator systems such as the social amoebae \emph{Dictyostelium} and populations of BZ catalytic particles using spatially structured external drives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源