论文标题
封闭形式的解决方案,以在任意维度上的受偏见的晶格随机步行的动力学
Closed-form solutions to the dynamics of confined biased lattice random walks in arbitrary dimensions
论文作者
论文摘要
偏置的晶格随机步行(BLRW)用于模拟随机运动,在工程和自然系统(如光疗,趋化性或重力)中的各种经验情况下漂移。当运动也受到自然障碍物或实验设备引起的外部边界的影响时,必须对隔离中的随机运动进行建模。为了研究这些情况,已经采用了限制的BLRW模型,但由于缺乏分析框架,因此仅通过计算技术才能使用。在这里,我们通过在任意维度和任意边界条件下得出绿色的功能或繁殖的BLRW来为这种分析方法奠定基础。通过使用这些繁殖器,我们可以在一个维度上明确构建与时间相关的第一-Passage概率,以反射和周期域,而在较高的维度中,我们能够找到其生成功能。后者用于找到$ d $维的盒子,$ d $维的圆环或两者的组合的平均第一-Passage通道时间。我们展示了令人惊讶的特征的出现,例如传播器的时空动力学中存在鞍座,具有反射边界,周期域中的第一通道概率中的双峰特征以及均值返回时间的均值最小化,以最大程度地减少矩形域中中等强度的偏置。此外,我们量化了如何通过将更少的目标放置到边界接近边界的偏差时,与远离它们的许多目标相比,如何实现偏差平均较短的时间。
Biased lattice random walks (BLRW) are used to model random motion with drift in a variety of empirical situations in engineering and natural systems such as phototaxis, chemotaxis or gravitaxis. When motion is also affected by the presence of external borders resulting from natural barriers or experimental apparatuses, modelling biased random movement in confinement becomes necessary. To study these scenarios, confined BLRW models have been employed but so far only through computational techniques due to the lack of an analytic framework. Here, we lay the groundwork for such an analytical approach by deriving the Green's functions, or propagators, for the confined BLRW in arbitrary dimensions and arbitrary boundary conditions. By using these propagators we construct explicitly the time dependent first-passage probability in one dimension for reflecting and periodic domains, while in higher dimensions we are able to find its generating function. The latter is used to find the mean first-passage passage time for a $d$-dimensional box, $d$-dimensional torus or a combination of both. We show the appearance of surprising characteristics such as the presence of saddles in the spatio-temporal dynamics of the propagator with reflecting boundaries, bimodal features in the first-passage probability in periodic domains and the minimisation of the mean first-return time for a bias of intermediate strength in rectangular domains. Furthermore, we quantify how in a multi-target environment with the presence of a bias shorter mean first-passage times can be achieved by placing fewer targets close to boundaries in contrast to many targets away from them.