论文标题
从薄到厚的域墙:$φ^8 $型号的示例
From thin to thick domain walls: An example of the $φ^8$ model
论文作者
论文摘要
我们证明,对于$(1+1)$ - 尺寸$φ^8 $模型的某些某些参数值,可以从多项式方程中找到扭结解决方案。对于某些参数的选定值,我们给出了模型所有拓扑领域的扭结的明确公式。基于获得的代数方程,我们表明,在特殊的限制情况下,模型中出现了与幂律渐近学的扭结,特别是描述了较厚的域壁。这种对象对于现代宇宙学可能引起人们的关注。
We demonstrate that for some certain values of parameters of the $(1+1)$-dimensional $φ^8$ model, the kink solutions can be found from polynomial equations. For some selected values of the parameters we give the explicit formulas for the kinks in all topological sectors of the model. Based on the obtained algebraic equations, we show that in a special limiting case, kinks with power-law asymptotics arise in the model, describing, in particular, thick domain walls. Objects of this kind could be of interest for modern cosmology.