论文标题

Serre-Swan定理用于共介式代数

A Serre-Swan Theorem for Coisotropic Algebras

论文作者

Dippell, Marvin, Menke, Felix, Waldmann, Stefan

论文摘要

共截相代数用于正式化泊松几何形状以及变形量化的侧相降低,并在其他各个领域中找到应用。在本文中,我们证明了一个serre-swan定理,该定理与辅助代数相关的定期投影模块是由歧管$ m $,submanifold $ c $和可集成的平滑分布$ d \ subseteq tc $与矢量套装相等的,在这种几何形式的情况下,并显示出一个简单分布的类别的相等性。

Coisotropic algebras are used to formalize coisotropic reduction in Poisson geometry as well as in deformation quantization and find applications in various other fields as well. In this paper we prove a Serre-Swan Theorem relating the regular projective modules over the coisotropic algebra built out of a manifold $M$, a submanifold $C$ and an integrable smooth distribution $D \subseteq TC$ with vector bundles over this geometric situation and show an equivalence of categories for the case of a simple distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源