论文标题
Benn:使用深神经网络的偏差估计
BENN: Bias Estimation Using Deep Neural Network
论文作者
论文摘要
检测机器学习中偏见(ML)模型的需求导致了多种偏差检测方法的发展,但是使用它们是具有挑战性的,因为每种方法:i)探索偏见的不同道德方面,这可能会导致不同方法之间的矛盾输出,ii),ii),因此,每个方法都不能与其他方法相比,因此需要与其他方法相提并论。检查的模型。在本文中,我们提出了本恩 - 一种新型的偏见估计方法,该方法使用了预定的无监督的深神经网络。给定ML模型和数据样本,Benn根据模型的预测为每个功能提供了偏差估计。我们使用三个基准数据集和欧洲电信公司使用的一个专有搅拌预测模型对Benn进行了评估,并将其与21种现有偏见估计方法进行了比较。评估结果强调了Benn比整体的显着优势,因为它是通用的(即可以应用于任何ML模型),并且不需要域专家,但它提供了与集合的偏差估计。
The need to detect bias in machine learning (ML) models has led to the development of multiple bias detection methods, yet utilizing them is challenging since each method: i) explores a different ethical aspect of bias, which may result in contradictory output among the different methods, ii) provides an output of a different range/scale and therefore, can't be compared with other methods, and iii) requires different input, and therefore a human expert needs to be involved to adjust each method according to the examined model. In this paper, we present BENN -- a novel bias estimation method that uses a pretrained unsupervised deep neural network. Given a ML model and data samples, BENN provides a bias estimation for every feature based on the model's predictions. We evaluated BENN using three benchmark datasets and one proprietary churn prediction model used by a European Telco and compared it with an ensemble of 21 existing bias estimation methods. Evaluation results highlight the significant advantages of BENN over the ensemble, as it is generic (i.e., can be applied to any ML model) and there is no need for a domain expert, yet it provides bias estimations that are aligned with those of the ensemble.