论文标题
WTE2中使用非常规旋转轨道的垂直极化磁体的无现场确定性切换
Field-free deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2
论文作者
论文摘要
具有垂直磁各向异性(PMA)的磁铁磁化状态的自旋轨道扭矩(SOT)驱动的确定性控制是下一代旋转旋转应用的关键,包括非挥发性,超快和能源有效的数据存储设备。但是,垂直磁化的无野外确定性切换仍然是一个挑战,因为它需要非平面抗阻尼扭矩,由于系统的对称性,在常规的自旋源材料(例如重金属(HM)和拓扑绝缘子)中不允许使用。在紧急量子材料中对低晶体对称性的开发提供了一种独特的方法,可以实现具有非常规形式的SOT。在这里,我们报告了垂直极化的范德华(VDW)磁铁的第一个实验实现,该磁力是采用平面外抗阻尼SOT生成的层次WTE2中产生的,这是一种低晶体对称性量子材料。数值模拟确认WTE2中的平面外抗原扭矩是垂直方向上观察到的磁化切换的原因。
Spin-orbit torque (SOT) driven deterministic control of the magnetization state of a magnet with perpendicular magnetic anisotropy (PMA) is key to next generation spintronic applications including non-volatile, ultrafast, and energy efficient data storage devices. But, field-free deterministic switching of perpendicular magnetization remains a challenge because it requires an out-of-plane anti-damping torque, which is not allowed in conventional spin source materials such as heavy metals (HM) and topological insulators due to the system's symmetry. The exploitation of low-crystal symmetries in emergent quantum materials offers a unique approach to achieve SOTs with unconventional forms. Here, we report the first experimental realization of field-free deterministic magnetic switching of a perpendicularly polarized van der Waals (vdW) magnet employing an out-of-plane anti-damping SOT generated in layered WTe2 which is a low-crystal symmetry quantum material. The numerical simulations confirm that out-of-plane antidamping torque in WTe2 is responsible for the observed magnetization switching in the perpendicular direction.