论文标题
离散群体和索引理论的拓扑K理论
Topological K-theory for discrete groups and Index theory
论文作者
论文摘要
我们为离散的可计数组提供了一个完整的解决方案,以定义和计算Baum-Connes装配图之间的几何配对和计算与歧管上的适当作用以及该组代数的循环周期性同学相关的几何循环给出的几何配对。的确,对于任何此类$γ$(没有任何进一步假设),我们从Baum-Connes组装图的左侧构建了明确的形态,到该组代数的周期性循环同源性。这种形态在这里称为Chern-Baum-Connes组装图,允许为Chern-Connes与组代数的周期性循环共同体配对提供适当而明确的配方。 需要几个定理来制定Chern-Baum-Connes组装图。特别是,我们建立了一个分离的Riemann-Roch定理,这是定期定期分离的$γ$ proper行为的错误方式,在Baum-Connes的左侧之间建立了Chern形态的构建,以及与$γ$的$γ$相关的$ quntustry和$γ$ sermorphism的同类群体,均为$ a $ c and coltusthers $ c。与$γ$相关的DELACALIDER COLOMOLOGY组与同源组$ H _*(γ,Fγ)$相关的显式同胞组装图。 然后,我们就上述配对(对于任何$γ$)提供了索引理论公式,该公式与不变形式的配对(与几何循环相关的配对形式)表示,并根据DELACALIZED CHERN和TODD类别给出,以及使用Burghelea计算的组合量与组合量自然相关的电流。作为结果的一部分,我们证明本文中使用的左侧组是组装映射左侧的通常的分析模型的同构。
We give a complete solution, for discrete countable groups, to the problem of defining and computing a geometric pairing between the left hand side of the Baum-Connes assembly map, given in terms of geometric cycles associated to proper actions on manifolds, and cyclic periodic cohomology of the group algebra. Indeed, for any such group $Γ$ (without any further assumptions on it) we construct an explicit morphism from the Left-Hand side of the Baum-Connes assembly map to the periodic cyclic homology of the group algebra. This morphism, called here the Chern-Baum-Connes assembly map, allows to give a proper and explicit formulation for a Chern-Connes pairing with the periodic cyclic cohomology of the group algebra. Several theorems are needed to formulate the Chern-Baum-Connes assembly map. In particular we establish a delocalised Riemann-Roch theorem, the wrong way functoriality for periodic delocalised cohomology for $Γ$-proper actions, the construction of a Chern morphism between the Left-Hand side of Baum-Connes and a delocalised cohomology group associated to $Γ$ which is an isomorphism once tensoring with $\mathbb{C}$, and the construction of an explicit cohomological assembly map between the delocalised cohomology group associated to $Γ$ and the homology group $H_*(Γ,FΓ)$. We then give an index theoretical formula for the above mentioned pairing (for any $Γ$) in terms of pairings of invariant forms, associated to geometric cycles and given in terms of delocalized Chern and Todd classes, and currents naturally associated to group cocycles using Burghelea's computation. As part of our results we prove that left-Hand side group used in this paper is isomorphic to the usual analytic model for the left-hand side of the assembly map.