论文标题

在结,补充和6J符号上

On knots, complements, and 6j-symbols

论文作者

Wang, Hao Ellery, Yang, Yuanzhe Jack, Zhang, Hao Derrick, Nawata, Satoshi

论文摘要

本文调查了彩色homfly-pt和kauffman同源性之间的关系,$ \ text {so}(n)$ Quantum $ 6J $ -Symbols和$(a,t)$ - 变形$ f_k $。首先,我们提出了一个简单的分级更改规则,它使我们能够从$ [r^2] $ - 彩色的四型四型homfly-ppt ppt the the Nots中获得$ [r] $ colored四级高级的曲棍球同源性。该规则源于表示表示的同构$(\ mathfrak {so} _6,[r])\ cong(\ mathfrak {sl} _4,[r^2])$。另外,我们发现$ $ - 多项式的SO和Su-Type的关系来自Kauffman同源性的差异。其次,我们提出了$ \ text {so}(n)(n \ geq 4)$ Quantum $ 6J $ -Symbols用于对称表示的封闭形式的表达,并计算当表示$ r = [1],[2] $的情况时,计算情况的相应$ \ text {so}(so} so}(so} n)$ fusion矩阵。第三,我们猜测$(a,t)$ - 变形$ f_k $的封闭式表达式,用于带正辫子的双重扭结的补充。使用猜想的表达式,我们得出了$ t $变形的ADO多项式。

This paper investigates the relation between colored HOMFLY-PT and Kauffman homology, $\text{SO}(N)$ quantum $6j$-symbols and $(a,t)$-deformed $F_K$. First, we present a simple rule of grading change which allows us to obtain the $[r]$-colored quadruply-graded Kauffman homology from the $[r^2]$-colored quadruply-graded HOMFLY-PT homology for thin knots. This rule stems from the isomorphism of the representations $(\mathfrak{so}_6,[r]) \cong (\mathfrak{sl}_4,[r^2])$. Also, we find the relationship among $A$-polynomials of SO and SU-type coming from a differential on Kauffman homology. Second, we put forward a closed-form expression of $\text{SO}(N)(N\geq 4)$ quantum $6j$-symbols for symmetric representations, and calculate the corresponding $\text{SO}(N)$ fusion matrices for the cases when representations $R = [1],[2]$. Third, we conjecture closed-form expressions of $(a,t)$-deformed $F_K$ for the complements of double twist knots with positive braids. Using the conjectural expressions, we derive $t$-deformed ADO polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源